Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Montero, X. Galetz, M. C. Schütze, M. |
| Copyright Year | 2013 |
| Abstract | Slurry aluminide coatings are widely applied to protect metallic surfaces from oxidation and corrosion. They are frequently used in gas turbine engine nozzles because of economical advantages and a straight-forward manufacturing route. A variety of commercial slurries are available to aluminize the surfaces of nickel-based superalloys, however, they have two main disadvantages. First, the phosphates and chromates or halides used as binders and to activate the diffusion species are environmentally harmful; second, the conventional systems have to be heat-treated in an inert atmosphere. As an outcome of the PARTICOAT project the variety of slurry derived coatings has been extended by tailoring the particle size of the metallic source. By doing that, environmentally friendly water-based slurries were developed to produce in a one-step process und atmospheric conditions, a thermal barrier system based on an aluminum diffusion layer and an alumina foam layer which serves as bond coat as well as top coat (TC). CM 247 nickel base superalloy was coated and heat-treated in air using newly developed Al and Al–Si slurries. The oxidation behavior was investigated at 1,000 °C and then compared to pack-cemented aluminide coatings. The sulphidation behavior was investigated at 1,000 °C in an atmosphere of 1.5 vol% SO$_{2}$ in synthetic air for Al and Al–Si slurry coated samples with and without the alumina foam TC layer. PARTICOAT Al-based slurries,, after the initial stabilization of the TC, showed similar oxidation kinetics as pack cemented aluminides when exposed to air. When the coatings were exposed to sulphide-containing atmospheres, their oxidation rates increased, producing typical type I corrosion damage. Coatings without TC produced more protective oxide scales. The weight gain and coating area affected by corrosion were slightly lower for the Al-based slurries after 1,000 h of exposure than for the Al–Si based ones. The new coating presented here offers unique advantages in comparison to state-of-the-art slurry and pack cemented coatings by opening a potential way to manufacture a complete thermal barrier coating system by a simple, inexpensive and environmentally safe deposition and heat-treatment in air. |
| Starting Page | 635 |
| Ending Page | 649 |
| Page Count | 15 |
| File Format | |
| ISSN | 0030770X |
| Journal | Oxidation of Metals |
| Volume Number | 80 |
| Issue Number | 5-6 |
| e-ISSN | 15734889 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2013-08-09 |
| Publisher Place | Boston |
| Access Restriction | Subscribed |
| Subject Keyword | Aluminum Slurry Co-deposition Thermal barrier Diffusion coating Hot corrosion Sulphidation Oxidation Metallic Materials Inorganic Chemistry Tribology, Corrosion and Coatings |
| Content Type | Text |
| Resource Type | Article |
| Subject | Materials Chemistry Metals and Alloys Inorganic Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|