Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Segal, Ben Iwen, M. A. |
| Copyright Year | 2012 |
| Abstract | We study the problem of quickly estimating the best k-term Fourier representation for a given periodic function f: [0, 2π] → ℂ. Solving this problem requires the identification of k of the largest magnitude Fourier series coefficients of f in worst case k $^{2}$ · log$^{ O(1)}$ N time. Randomized sublinear-time Monte Carlo algorithms, which have a small probability of failing to output accurate answers for each input signal, have been developed for solving this problem (Gilbert et al. 2002, 2005). These methods were implemented as the Ann Arbor Fast Fourier Transform (AAFFT) and empirically evaluated in Iwen et al. (Commun Math Sci 5(4):981–998, 2007). In this paper we present a new implementation, called the Gopher Fast Fourier Transform (GFFT), of more recently developed sparse Fourier transform techniques (Iwen, Found Comput Math 10(3):303–338, 2010, Appl Comput Harmon Anal, 2012). Experiments indicate that GFFT is faster than AAFFT. In addition to our empirical evaluation, we also consider the existence of sublinear-time Fourier approximation methods with deterministic approximation guarantees for functions whose sequences of Fourier series coefficents are compressible. In particular, we prove the existence of sublinear-time Las Vegas Fourier Transforms which improve on the recent deterministic Fourier approximation results of Iwen (Found Comput Math 10(3):303–338, 2010, Appl Comput Harmon Anal, 2012) for Fourier compressible functions by guaranteeing accurate answers while using an asymptotically near-optimal number of function evaluations. |
| Starting Page | 239 |
| Ending Page | 263 |
| Page Count | 25 |
| File Format | |
| ISSN | 10171398 |
| Journal | Numerical Algorithms |
| Volume Number | 63 |
| Issue Number | 2 |
| e-ISSN | 15729265 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2012-07-26 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Fourier analysis Sparse approximation Fast Fourier transforms Randomized algorithms Numeric Computing Algorithms Algebra Theory of Computation Numerical Analysis |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|