Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Macabuag, Joshua Rossetto, Tiziana Ioanu, Ioanna Suppasri, Anawat Sugawara, Daisuke Adria, Bru Imamura, Fumihiko Eames, Ian Koshimura, Shunichi |
| Copyright Year | 2016 |
| Abstract | Tsunami fragility curves are statistical models which form a key component of tsunami risk models, as they provide a probabilistic link between a tsunami intensity measure (TIM) and building damage. Existing studies apply different TIMs (e.g. depth, velocity, force etc.) with conflicting recommendations of which to use. This paper presents a rigorous methodology using advanced statistical methods for the selection of the optimal TIM for fragility function derivation for any given dataset. This methodology is demonstrated using a unique, detailed, disaggregated damage dataset from the 2011 Great East Japan earthquake and tsunami (total 67,125 buildings), identifying the optimum TIM for describing observed damage for the case study locations. This paper first presents the proposed methodology, which is broken into three steps: (1) exploratory analysis, (2) statistical model selection and trend analysis and (3) comparison and selection of TIMs. The case study dataset is then presented, and the methodology is then applied to this dataset. In Step 1, exploratory analysis on the case study dataset suggests that fragility curves should be constructed for the sub-categories of engineered (RC and steel) and non-engineered (wood and masonry) construction materials. It is shown that the exclusion of buildings of unknown construction material (common practice in existing studies) may introduce bias in the results; hence, these buildings are estimated as engineered or non-engineered through use of multiple imputation (MI) techniques. In Step 2, a sensitivity analysis of several statistical methods for fragility curve derivation is conducted in order to select multiple statistical models with which to conduct further exploratory analysis and the TIM comparison (to draw conclusions which are non-model-specific). Methods of data aggregation and ordinary least squares parameter estimation (both used in existing studies) are rejected as they are quantitatively shown to reduce fragility curve accuracy and increase uncertainty. Partially ordered probit models and generalised additive models (GAMs) are selected for the TIM comparison of Step 3. In Step 3, fragility curves are then constructed for a number of TIMs, obtained from numerical simulation of the tsunami inundation of the 2011 GEJE. These fragility curves are compared using K-fold cross-validation (KFCV), and it is found that for the case study dataset a force-based measure that considers different flow regimes (indicated by Froude number) proves the most efficient TIM. It is recommended that the methodology proposed in this paper be applied for defining future fragility functions based on optimum TIMs. With the introduction of several concepts novel to the field of fragility assessment (MI, GAMs, KFCV for model optimisation and comparison), this study has significant implications for the future generation of empirical and analytical fragility functions. |
| Starting Page | 1257 |
| Ending Page | 1285 |
| Page Count | 29 |
| File Format | |
| ISSN | 0921030X |
| Journal | Natural Hazards |
| Volume Number | 84 |
| Issue Number | 2 |
| e-ISSN | 15730840 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2016-08-11 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Tsunami damage Empirical fragility curves Generalised linear models Generalised additive models Ordinary least squares Cross validation Bootstrap techniques Multiple imputation Intensity measures Inundation simulation Great East Japan earthquake and tsunami 2011 Natural Hazards Hydrogeology Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Civil Engineering Environmental Management |
| Content Type | Text |
| Resource Type | Article |
| Subject | Atmospheric Science Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|