Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Ma, Zhongchen Dai, Qun |
| Copyright Year | 2016 |
| Abstract | Extreme learning machine (ELM) has several interesting and significant features. In this paper, a novel pruned Stacking ELMs (PS-ELMs) algorithm for time series prediction (TSP) is proposed. It employs ELM as the level-0 algorithm to train several models for Stacking. And our previously proposed reduce-error pruning for TSP (ReTSP)-Trend pruning technique is used to solve the problem that the level-0 learners might make many correlated error predictions. ReTSP-Trend refers to an evaluation measure for reduce-error pruning for TSP (ReTSP), which takes into account the time series trend and the forecasting error direction. What’s more, ELM and simple averaging are used to generate the level-1 model. With the development of PS-ELMs, firstly, those essential advantages of ELM will be naturally inherited. Secondly, those specific defects of ELM are ameliorated to some extent, with the help of ensemble pruning paradigm. Thirdly, ensemble pruning is employed to raise the robustness and accuracy of time series forecasting, making up for the shortages of the existing research. Fourthly, our previously proposed pruning measure ReTSP-Trend is employed in PS-ELMs, which indeed guarantees that the remaining predictor which supplements the subensemble the most will be selected. And finally, the development of PS-ELMs will promote our investigation to the popular ensemble technique of Stacked Generalization. The experimental results on four benchmark financial time series datasets verified the validity of the proposed PS-ELMs algorithm. |
| Starting Page | 831 |
| Ending Page | 856 |
| Page Count | 26 |
| File Format | |
| ISSN | 13704621 |
| Journal | Neural Processing Letters |
| Volume Number | 44 |
| Issue Number | 3 |
| e-ISSN | 1573773X |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2016-01-12 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Extreme learning machine (ELM) Stacked Generalization (Stacking) Reduce-error pruning for time series prediction (ReTSP) ReTSP-Trend Financial time series forecasting Pruned Stacking extreme learning machines (PS-ELMs) Artificial Intelligence (incl. Robotics) Complex Systems Computational Intelligence |
| Content Type | Text |
| Resource Type | Article |
| Subject | Neuroscience Artificial Intelligence Computer Networks and Communications Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|