Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Majumder, Urmi Garg, Sudhanshu LaBean, Thomas H. Reif, John H. |
| Copyright Year | 2015 |
| Abstract | Algorithmic DNA self-assembly is capable of forming complex patterns and shapes, that have been shown theoretically, and experimentally. Its experimental demonstrations, although improving over recent years, have been limited by significant assembly errors. Since 2003 there have been several designs of error-resilient tile sets but all of these existing error-resilient tile systems assumed directional growth of the tiling assembly. This is a very strong assumption because experiments show that tile self-assembly does not necessarily behave in such a fashion, since they may also grow in the reverse of the intended direction. The assumption of directional growth of the tiling assembly also underlies the growth model in theoretical assembly models such as the TAM. What is needed is a means for enforce this directionality constraint, which will allow us to reduce assembly errors. In this paper we describe a protection/deprotection strategy to strictly enforce the direction of tiling assembly growth so that the assembly process is robust against errors. Initially, we start with (1) a single “activated” tile with output pads that can bind with other tiles, along with (2) a set of “deactivated” tiles, meaning that the tile’s output pads are protected and cannot bind with other tiles. After other tiles bind to a “deactivated” tile’s input pads, the tile transitions to an active state and its output pads are exposed, allowing further growth. When these are activated in a desired order, we can enforce a directional assembly at the same scale as the original one. Such a system can be built with minimal modifications of existing DNA tile nanostructures. We propose a new type of tiles called activatable tiles and its role in compact proofreading. Activatable tiles can be thought of as a particular case of the more recent signal tile assembly model, where signals transmit binding/unbinding instructions across tiles on binding to one or more input sites. We describe abstract and kinetic models of activatable tile assembly and show that the error rate can be decreased significantly with respect to Winfree’s original kinetic tile assembly model without considerable decrease in assembly growth speed. We prove that an activatable tile set is an instance of a compact, error-resilient and self-healing tile-set. We describe a DNA design of activatable tiles and a mechanism of deprotection using DNA polymerization and strand displacement. We also perform detailed stepwise simulations using a DNA Tile simulator Xgrow, and show that the activatable tiles mechanism can reduce error rates in self assembly. We conclude with a brief discussion on some applications of activatable tiles beyond computational tiling, both as (1) a novel system for concentration of molecules, and (2) a catalyst in sequentially triggered chemical reactions . |
| Starting Page | 611 |
| Ending Page | 634 |
| Page Count | 24 |
| File Format | |
| ISSN | 15677818 |
| Journal | Natural Computing |
| Volume Number | 15 |
| Issue Number | 4 |
| e-ISSN | 15729796 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2015-11-25 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | DNA self-assembly Error correction Tile assembly model Strand displacement Programmable molecular machines Deprotection systems Concentration systems Reaction catalyzation Theory of Computation Evolutionary Biology Processor Architectures Artificial Intelligence (incl. Robotics) Complex Systems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|