Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Berzeri, Marcello Campanelli, Marcello Shabana, Ahmed A. |
| Copyright Year | 2001 |
| Abstract | The equivalence of the finite-element formulations used inflexible multibody dynamics is the focus of this investigation. Thisequivalence will be used to address several fundamental issues related tothe deformations, flexible body coordinate systems, and the geometriccentrifugal stiffening effect. Two conceptually different finite-elementformulations that lead to exact modeling of the rigid body dynamics will beused. The first one is the absolute nodal coordinateformulation in which beams and plates can be treated as isoparametricelements. This formulation leads to a constant and symmetric mass matrix andhighly nonlinear elastic forces. In this study, it is demonstrated thatdifferent element coordinate systems which are used for the convenience ofdescribing the element deformations lead to similar results as the elementsize is reduced. In particular, two element frames are used;the pinned and the tangent frames. The pinned frame has one ofits axes passing through two nodes of the element, while the tangent frame isrigidly attached to one of the ends of the element. Numerical resultsobtained using these two different frames are found tobe in good agreement as the element size decreases. The relationshipbetween the coordinates used in the absolute nodal coordinate formulationand the floating frame of reference formulation is presented. Thisrelationship can be used to obtain the highly nonlinear expression of thestrain energy used in the absolute nodal coordinate formulation from thesimple energy expression used in the floating frame of referenceformulation. It is also shown that the source of the nonlinearityis due to the finite rotation of the element. The result of the analysispresented clearly demonstrates that the instability observedin high-speed rotor analytical models due to the neglect of the geometriccentrifugal stiffening is not a problem inherent to a particular finite-element formulation. Such a problem can only be avoided by considering the known linear effect of the geometric centrifugal stiffening or by using a nonlinear elastic model as recently demonstrated. Fourier analysis of the solutions obtained in this investigation also sheds new light on the fundamental problem of the choice of the deformable body coordinate system in the floating frame of reference formulation. Another method forformulating the elastic forces in the absolute nodal coordinate formulationbased on a continuum mechanics approach is also presented. |
| Starting Page | 21 |
| Ending Page | 54 |
| Page Count | 34 |
| File Format | |
| ISSN | 13845640 |
| Journal | Multibody System Dynamics |
| Volume Number | 5 |
| Issue Number | 1 |
| e-ISSN | 1573272X |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 2001-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Optimization Vibration, Dynamical Systems, Control Mechanical Engineering Automotive and Aerospace Engineering Electronic and Computer Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Control and Optimization Mechanical Engineering Aerospace Engineering Modeling and Simulation Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|