Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Al Zubaidi, Salah Ghani, Jaharah A. Haron, Che Hassan Che |
| Copyright Year | 2013 |
| Abstract | Surface roughness is commonly used to indicate the quality of machine parts. Optimizing cutting parameters throughout the machining process is an important aspect for manufacturers, as it allows them to achieve a minimum surface value. During this study, a new optimization technique known as the gravitational search algorithm (GSA) was employed in order to achieve minimum surface roughness when end milling a Ti6Al4V alloy under dry cutting conditions, with both PVD coated and uncoated cutting tools. Regression models have been created based on the results of real experimental data. Through use of SPSS software, it was possible to formulate the objective (fitness) functions which were used in the GSA optimization for each cutting tool. A MATLAB code was then created to instigate the optimization process. The results indicated that high cutting speed and low feed rate and depth of cut could result in a minimum surface roughness value of (0.6255 μm), based on the objective function for the PVD cutting tool. Alternatively, surface roughness of around (0.4165 μm) could be achieved by using an uncoated tool on a lower feed rate, depth of cut and cutting speed. The same GSA technique was used in another case study optimized by Genetic algorithm (GA). The GSA achieved the same results, and proved that it is faster than GA: GSA could reach the optimum solution in the third iteration; GA could only reach it in the 67th. |
| Starting Page | 1701 |
| Ending Page | 1715 |
| Page Count | 15 |
| File Format | |
| ISSN | 00256455 |
| Journal | Meccanica |
| Volume Number | 48 |
| Issue Number | 7 |
| e-ISSN | 15729648 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2013-02-06 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Optimization Ti6Al4V alloy Gravitational search algorithm Surface roughness Mechanics Civil Engineering Automotive Engineering Mechanical Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanics of Materials Condensed Matter Physics Mechanical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|