Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Guay Paquet, Mathieu Harnad, J. |
| Copyright Year | 2015 |
| Abstract | Two methods of constructing 2D Toda τ-functions that are generating functions for certain geometrical invariants of a combinatorial nature are related. The first involves generation of paths in the Cayley graph of the symmetric group S $_{ n }$ by multiplication of the conjugacy class sums $${C_\lambda \in \mathbf{C}[S_n]}$$ in the group algebra by elements of an abelian group of central elements. Extending the characteristic map to the tensor product $${\mathbf{C}[S_n] \otimes \mathbf{C}[S_n]}$$ leads to double expansions in terms of power sum symmetric functions, in which the coefficients count the number of such paths. Applying the same map to sums over the orthogonal idempotents leads to diagonal double Schur function expansions that are identified as τ-functions of hypergeometric type. The second method is the standard construction of τ-functions as vacuum-state matrix elements of products of vertex operators in a fermionic Fock space with elements of the abelian group of convolution symmetries. A homomorphism between these two group actions is derived and shown to be intertwined by the characteristic map composed with fermionization. Applications include Okounkov’s generating function for double Hurwitz numbers, which count branched coverings of the Riemann sphere with specified ramification profiles at two branch points, and only simple branching at all the others, and various analogous combinatorial counting functions. |
| Starting Page | 827 |
| Ending Page | 852 |
| Page Count | 26 |
| File Format | |
| ISSN | 03779017 |
| Journal | Letters in Mathematical Physics |
| Volume Number | 105 |
| Issue Number | 6 |
| e-ISSN | 15730530 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2015-05-12 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Hurwitz numbers Tau functions combinatorics branched coverings Cayley graph Theoretical, Mathematical and Computational Physics Statistical Physics, Dynamical Systems and Complexity Geometry Group Theory and Generalizations |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistical and Nonlinear Physics Mathematical Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|