Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Burns, Brendan Davis Danyluk, Andrea Pohoreckyj |
| Copyright Year | 2000 |
| Abstract | Expert classification systems have proven themselves effective decision makers for many types of problems. However, the accuracy of such systems is often highly dependent upon the accuracy of a human expert's domain theory. When human experts learn or create a set of rules, they are subject to a number of hindrances. Most significantly experts are, to a greater or lesser extent, restricted by the tradition of scholarship which has preceded them and by an inability to examine large amounts of data in a rigorous fashion without the effects of boredom or frustration. As a result, human theories are often erroneous or incomplete. To escape this dependency, machine learning systems have been developed to automatically refine and correct an expert's domain theory. When theory revision systems are applied to expert theories, they often concentrate on the reformulation of the knowledge provided rather than on the reformulation or selection of input features. The general assumption seems to be that the expert has already selected the set of features that will be most useful for the given task. That set may, however, be suboptimal. This paper studies theory refinement and the relative benefits of applying feature selection versus more extensive theory reformulation. |
| Starting Page | 89 |
| Ending Page | 107 |
| Page Count | 19 |
| File Format | |
| ISSN | 08856125 |
| Journal | Machine Learning |
| Volume Number | 38 |
| Issue Number | 1-2 |
| e-ISSN | 15730565 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 2000-01-01 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Computer Science Artificial Intelligence (incl. Robotics) Automation and Robotics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|