Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Scheller, Robert M. Spencer, Wayne D. Rustigian Romsos, Heather Syphard, Alexandra D. Ward, Brendan C. Strittholt, James R. |
| Copyright Year | 2011 |
| Abstract | Natural resource managers are often challenged with balancing requirements to maintain wildlife populations and to reduce risks of catastrophic or dangerous wildfires. This challenge is exemplified in the Sierra Nevada of California, where proposals to thin vegetation to reduce wildfire risks have been highly controversial, in part because vegetation treatments could adversely affect an imperiled population of the fisher (Martes pennanti) located in the southern Sierra Nevada. The fisher is an uncommon forest carnivore associated with the types of dense, structurally complex forests often targeted for fuel reduction treatments. Vegetation thinning and removal of dead-wood structures would reduce fisher habitat value and remove essential habitat elements used by fishers for resting and denning. However, crown-replacing wildfires also threaten the population’s habitat, potentially over much broader areas than the treatments intended to reduce wildfire risks. To investigate the potential relative risks of wildfires and fuels treatments on this isolated fisher population, we coupled three spatial models to simulate the stochastic and interacting effects of wildfires and fuels management on fisher habitat and population size: a spatially dynamic forest succession and disturbance model, a fisher habitat model, and a fisher metapopulation model, which assumed that fisher fecundity and survivorship correlate with habitat quality. We systematically varied fuel treatment rate, treatment intensity, and fire regime, and assessed their relative effects on the modeled fisher population over 60 years. After estimating the number of adult female fishers remaining at the end of each simulation scenario, we compared the immediate negative effects of fuel treatments to the longer-term positive effect of fuel treatment (via reduction of fire hazard) using structural equation modeling. Our simulations suggest that the direct, negative effects of fuel treatments on fisher population size are generally smaller than the indirect, positive effects of fuel treatments, because fuels treatments reduced the probability of large wildfires that can damage and fragment habitat over larger areas. The benefits of fuel treatments varied by elevation and treatment location with the highest net benefits to fisher found at higher elevations and within higher quality fisher habitat. Simulated fire regime also had a large effect with the largest net benefit of fuel treatments occurring when a more severe fire regime was simulated. However, there was large uncertainty in our projections due to stochastic spatial and temporal wildfires dynamic and fisher population dynamics. Our results demonstrate the difficulty of projecting future populations in systems characterized by large, infrequent, stochastic disturbances. Nevertheless, these coupled models offer a useful decision-support system for evaluating the relative effects of alternative management scenarios; and uncertainties can be reduced as additional data accumulate to refine and validate the models. |
| Starting Page | 1491 |
| Ending Page | 1504 |
| Page Count | 14 |
| File Format | |
| ISSN | 09212973 |
| Journal | Landscape Ecology |
| Volume Number | 26 |
| Issue Number | 10 |
| e-ISSN | 15729761 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2011-10-15 |
| Publisher Place | Dordrecht |
| Access Restriction | Subscribed |
| Subject Keyword | Fisher Martes pennanti Fuel treatments Sierra Nevada Fire suppression Habitat suitability LANDIS-II PATCH Habitat modeling California Wildfire Forestry Ecology Landscape Ecology Plant Ecology Plant Sciences Forestry Management |
| Content Type | Text |
| Resource Type | Article |
| Subject | Geography, Planning and Development Ecology Nature and Landscape Conservation |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|