Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Rawlings, Philip K. |
| Copyright Year | 2003 |
| Abstract | It is demonstrated that a one-dimensional gaussian random walk (GRW) possesses an underlying structure in the form of random oscillatory modes. These modes are not sinusoids, but can be isolated by a well-defined procedure. They have average wavelengths and amplitudes, both of which can be determined by experiments or by theoretical calculations. This paper reports such determinations by both methods and also develops a theory that is ultimately shown to agree with experiments. Both theory and simulations show that the average wavelength and the average amplitude scale with the order of the mode in exactly the same way that the modes of the well-known Weierstrass fractal scale with mode order. This is remarkable since the wave generated by the Weierstrass function, $$W(x) = \sum\nolimits_{m = 1}^\infty {(\tfrac{1}{a}} )^m \cos (g^m x)$$ , is fully determined for the variable x whereas the GRW is stochastic. By increasing the size of the steps in the GRW, it is possible to selectively remove the fastest modes, while leaving the remaining modes almost unchanged. For a GRW, the parameters corresponding to a and g in the Weierstrass function are found to be 2.0 and 4.0, respectively. These values are independent of the variance associated with the GRW. Application of the random modes is reserved for a later paper. |
| Starting Page | 769 |
| Ending Page | 788 |
| Page Count | 20 |
| File Format | |
| ISSN | 00224715 |
| Journal | Journal of Statistical Physics |
| Volume Number | 111 |
| Issue Number | 3-4 |
| e-ISSN | 15729613 |
| Language | English |
| Publisher | Kluwer Academic Publishers-Plenum Publishers |
| Publisher Date | 2003-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Physical Chemistry Quantum Physics Mathematical and Computational Physics Statistical Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistical and Nonlinear Physics Mathematical Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|