Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Pulkkinen, Otto Merikoski, Juha |
| Copyright Year | 2005 |
| Abstract | We analyze the existence and the size of the giant component in the stationary state of a Markovian model for bipartite multigraphs, in which the movement of the edge ends on one set of vertices of the bipartite graph is a zero-range process, the degrees being static on the other set. The analysis is based on approximations by independent variables and on the results of Molloy and Reed for graphs with prescribed degree sequences. The possible types of phase diagrams are identified by studying the behavior below the zero-range condensation point. As a specific example, we consider the so-called Evans interaction. In particular, we examine the values of a critical exponent, describing the growth of the giant component as the value of the dilution parameter controlling the connectivity is increased above the critical threshold. Rigorous analysis spans a large portion of the parameter space of the model exactly at the point of zero-range condensation. These results, supplemented with conjectures supported by Monte Carlo simulations, suggest that the phenomenological Landau theory for percolation on graphs is not broken by the fluctuations. |
| Starting Page | 881 |
| Ending Page | 907 |
| Page Count | 27 |
| File Format | |
| ISSN | 00224715 |
| Journal | Journal of Statistical Physics |
| Volume Number | 119 |
| Issue Number | 3-4 |
| e-ISSN | 15729613 |
| Language | English |
| Publisher | Kluwer Academic Publishers-Plenum Publishers |
| Publisher Date | 2005-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Random graph giant component zero-range process condensation Physical Chemistry Quantum Physics Mathematical and Computational Physics Statistical Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistical and Nonlinear Physics Mathematical Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|