Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Frame, Bill Miller, Raymond Lalonde, Richard L. |
| Copyright Year | 2003 |
| Abstract | Mixture modeling within the context of pharmacokinetic (PK)/pharmacodynamic (PD) mixed effects modeling is a useful tool to explore a population for the presence of two or more subpopulations, not explained by evaluated covariates. At present, statistical tests for the existence of mixed populations have not been developed. Therefore, a simulation study was undertaken to evaluate mixture modeling with NONMEM and explore the following questions. First, what is the probability of concluding that a mixed population exists when there truly is not a mixture (false positive significance level)? Second, what is the probability of concluding that a mixed population (two subpopulations) exists when there is truly a mixed population (power), and how well can the mixture be estimated, both in terms of the population parameters and the individual subject classification. Seizure count data were simulated using a Poisson distribution such that each subject's count could decrease from its baseline value, as a function of dose via an E$_{max}$ model. The dosing design for the simulation was based on a trial with the investigational anti-epileptic drug pregabalin. Four hundred and forty seven subjects received pregabalin as add on therapy for partial seizures, each with a baseline seizure count and up to three subsequent seizure counts. For the mixtures, the two subpopulations were simulated to differ in their E$_{max}$ values and relative proportions. One subpopulation always had its E$_{max}$ set to unity (E$_{max hi}$), allowing the count to approach zero with increasing dose. The other subpopulation was allowed to vary in its E$_{max}$ value (E$_{max lo}$=0.75, 0.5, 0.25, and 0) and in its relative proportion (pr) of the population (pr=0.05, 0.10, 0.25, and 0.50) giving a total of 4 ⋅ 4=16 different mixtures explored. Three hundred data sets were simulated for each scenario and estimations performed using NONMEM. Metrics used information about the parameter estimates, their standard errors (SE), the difference between minimum objective function (MOF) values for mixture and non-mixture models (MOF(δ)), the proportion of subjects classified correctly, and the estimated conditional probabilities of a subject being simulated as having E$_{max lo}$ (E$_{max hi}$) given that they were estimated as having E$_{maxlo}$ (E$_{max hi}$) and being estimated as having E$_{maxlo}$ (E$_{max hi}$) given that they were simulated as having E$_{max lo}$ (E$_{max hi}$). The false positive significance level was approximately 0.04 (using all 300 runs) or 0.078 (using only those runs with a successful covariance step), when there was no mixture. When simulating mixed data and for those characterizations with successful estimation and covariance steps, the median (range) percentage of 95% confidence intervals containing the true values for the parameters defining the mixture were 94% (89–96%), 89.5% (58–96%), and 95% (92–97%) for pr, E$_{max lo}$, and E$_{max hi}$, respectively. The median value of the estimated parameters pr, E$_{max lo}$ (excluding the case when E$_{max lo}$ was simulated to equal 0) and E$_{max hi}$ within a scenario were within ±28% of the true values. The median proportion of subjects classified correctly ranged from 0.59 to 0.96. In conclusion, when no mixture was present the false positive probability was less than 0.078 and when mixtures were present they were characterized with varying degrees of success, depending on the nature of the mixture. When the difference between subpopulations was greater (as E$_{max lo}$ approached zero or pr approached 0.5) the mixtures became easier to characterize. |
| Starting Page | 167 |
| Ending Page | 183 |
| Page Count | 17 |
| File Format | |
| ISSN | 1567567X |
| Journal | Journal of Pharmacokinetics and Pharmacodynamics |
| Volume Number | 30 |
| Issue Number | 3 |
| e-ISSN | 15738744 |
| Language | English |
| Publisher | Kluwer Academic Publishers-Plenum Publishers |
| Publisher Date | 2003-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Pharmacology/Toxicology Pharmacy Veterinary Medicine Biochemistry Biomedical Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Pharmacology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|