Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Seher, Matthias Huthwaite, Peter Lowe, Michael J. S. Nagy, Peter B. |
| Copyright Year | 2015 |
| Abstract | A low-frequency, omni-directional A0 Lamb wave ElectroMagnetic Acoustic Transducer (EMAT) is developed for applications in guided wave tomography, operating at 50 kHz on a 10 mm thick steel plate. The key objective is to excite an acceptably pure A0 wave mode in relation to the S0 mode, which can also be present at this operating point and is desired to be suppressed by approximately 30 dB. For that, a parametric Finite Element (FE) model of the design concept is implemented in a commercially available FE software, where the bias magnetic field is calculated initially, then combined with the eddy current caused by the induction coil to produce a force. A numerical optimization process employing a genetic algorithm is set up and the EMAT design is optimized to yield an improved A0 mode selectivity. The parameters subjected to optimization are the magnet diameter and the magnet lift-off, which control the direction of the exciting force in the skin depth layer and therefore the mode selectivity. Although there are three possible electromagnetic acoustic interaction mechanisms, the optimisation considers only the Lorentz force, as its performance surface contains a clear optimum and from the optimised design a physical prototype is built. The FE model is validated against measurements on an aluminium plate for the Lorentz force excitation mechanism and on a steel plate for both the Lorentz and magnetisation force. For the steel plate, it is found that only considering the Lorentz force leads to a significant overestimation of the mode selectivity, as the S0 amplitude is underestimated by the Lorentz force, but the A0 amplitude remains mainly uninfluenced. Further, it has been found that additionally including the magnetisation force into the optimisation leads to a better mode selectivity, however, the optimisation drives the optimum to a minimum magnet diameter and therefore reduces the EMAT sensitivity. In a numerical study robustness is shown for fairly large variations of the magnet lift-off and the magnetic permeability. Based on the findings, a two-step model-based design approach is proposed whereby only the Lorentz force is used in the first step for the optimisation and then in a second step, a realistic estimate of the mode selectivity of the optimised design can be obtained by additionally considering the magnetisation force. |
| Starting Page | 1 |
| Ending Page | 16 |
| Page Count | 16 |
| File Format | |
| ISSN | 01959298 |
| Journal | Journal of Nondestructive Evaluation |
| Volume Number | 34 |
| Issue Number | 3 |
| e-ISSN | 15734862 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2015-07-07 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | EMAT Lamb waves Finite element analysis Optimization Structural Mechanics Characterization and Evaluation of Materials Vibration, Dynamical Systems, Control Mechanics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanics of Materials Mechanical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|