Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Heo, Yeong Cheol Lee, Hae Kag Yang, Han Jun Cho, Jae Hwan |
| Copyright Year | 2014 |
| Abstract | This study aimed to assess the accuracy of time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography in depicting the actual length of the blood vessels. Three-dimensional time-of-flight magnetic resonance angiography and computed tomography angiography were performed using a flow phantom model that was 2.11 mm in diameter and had a total area of 0.26 cm$^{2}$. After this, volume rendering technique and the maximum intensity projection method as well as two-dimensional digital subtraction angiography and three-dimensional rotational angiography based on conventional angiography were conducted. For three-dimensional time-of-flight magnetic resonance angiography, 8 channel sensitivity encoding (SENSE) head coil for the 3.0 Tesla equipment was used. Fluid was added to the normal saline solution at various rates, such as 11.4, 20.0, 31.4, 40.0, 51.5, 60.0, 71.5, 80.1, 91.5, and 100.1 cm/s using an automatic contrast media injector. Each image was thoroughly examined. After reconstructing the image using the maximum intensity projection method, the length of the conduit in the center of the coronal plane was measured 30 times. After performing computed tomography angiography with the 64-channel CT scanner and 16-channel CT scanner, the images were sent to TeraRecon. Then, the length of the conduit in the center of the coronal plane of each image was measured 30 times after reconstructing the images using volume rendering and maximum intensity projection techniques. For conventional angiography, three-dimensional rotational angiography and two-dimensional digital subtraction angiography were used. Images obtained by three-dimensional rotational angiography were reconstructed and enhanced by 33, 50, and 100 % in the 128 Matrix and the 256 Matrix, respectively on the Xtra Vision workstation. The maximum intensity projection was used for the reconstruction, and the length of the conduit was measured 30 times in the center of the coronal plane of each image. Measurements using the two-dimensional digital subtraction angiography were obtained 30 times in the center of the image. As a result, the lumen length measured by three-dimensional enhanced flow MR angiography images was a minimum of 2.51 ± 0.12 mm when the fluid velocity was 40 cm/s. The images obtained by computed tomography angiography were larger than the actual images obtained by using the test equipment and the reconstruction method. Among the reconstruction methods of three-dimensional rotational angiography, the lumen length in the image reconstructed by 100 % in the 256 matrix was the smallest; 2.76 ± 0.009 mm. In the 128 matrix, as the scope of reconstruction was widened, the length of the vessel was increased by 0.710 units. In the 256 matrix, as the scope of reconstruction was widened, the length of the vessel was decreased by 0.972 units. In two-dimensional digital subtraction angiography, the lumen length in the image was 2.22 ± 0.095 mm. Although this image was magnified similar to the image reconstructed by 100 % in the 256 matrix of three-dimensional rotational angiography (P < 0.05), it was closest to the actual image among the images compared in this study. In conclusion, images obtained by two-dimensional digital subtraction angiography were closer to the actual images compared to the images obtained by other procedures. It can be concluded that vascular images obtained by magnetic resonance angiography, CT angiography, and conventional angiography were larger than the actual images. |
| Starting Page | 1 |
| Ending Page | 9 |
| Page Count | 9 |
| File Format | |
| ISSN | 01485598 |
| Journal | Journal of Medical Systems |
| Volume Number | 38 |
| Issue Number | 12 |
| e-ISSN | 1573689X |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2014-10-29 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Magnetic resonance angiography Computed tomography angiography Flow phantom Vascular diameter Health Informatics Statistics for Life Sciences, Medicine, Health Sciences |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Information Management Information Systems Health Informatics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|