Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Rabitz, Herschel Aliş, Ömer F. |
| Copyright Year | 1999 |
| Abstract | A family of multivariate representations is introduced to capture the input–output relationships of high‐dimensional physical systems with many input variables. A systematic mapping procedure between the inputs and outputs is prescribed to reveal the hierarchy of correlations amongst the input variables. It is argued that for most well‐defined physical systems, only relatively low‐order correlations of the input variables are expected to have an impact upon the output. The high‐dimensional model representations (HDMR) utilize this property to present an exact hierarchical representation of the physical system. At each new level of HDMR, higher‐order correlated effects of the input variables are introduced. Tests on several systems indicate that the few lowest‐order terms are often sufficient to represent the model in equivalent form to good accuracy. The input variables may be either finite‐dimensional (i.e., a vector of parameters chosen from the Euclidean space $$\mathcal{R}^n$$ ) or may be infinite‐dimensional as in the function space $${\text{C}}^n \left[ {0,1} \right]$$ . Each hierarchical level of HDMR is obtained by applying a suitable projection operator to the output function and each of these levels are orthogonal to each other with respect to an appropriately defined inner product. A family of HDMRs may be generated with each having distinct character by the use of different choices of projection operators. Two types of HDMRs are illustrated in the paper: ANOVA‐HDMR is the same as the analysis of variance (ANOVA) decomposition used in statistics. Another cut‐HDMR will be shown to be computationally more efficient than the ANOVA decomposition. Application of the HDMR tools can dramatically reduce the computational effort needed in representing the input–output relationships of a physical system. In addition, the hierarchy of identified correlation functions can provide valuable insight into the model structure. The notion of a model in the paper also encompasses input–output relationships developed with laboratory experiments, and the HDMR concepts are equally applicable in this domain. HDMRs can be classified as non‐regressive, non‐parametric learning networks. Selected applications of the HDMR concept are presented along with a discussion of its general utility. |
| Starting Page | 197 |
| Ending Page | 233 |
| Page Count | 37 |
| File Format | |
| ISSN | 02599791 |
| Journal | Journal of Mathematical Chemistry |
| Volume Number | 25 |
| Issue Number | 2-3 |
| e-ISSN | 15728897 |
| Language | English |
| Publisher | Kluwer Academic Publishers-Plenum Publishers |
| Publisher Date | 1999-01-01 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Physical Chemistry Theoretical and Computational Chemistry Math. Applications in Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|