Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Bucknum, Michael J. Castro, Eduardo A. |
| Copyright Year | 2008 |
| Abstract | In this paper, we describe the tenets of a chemical topology of crystalline matter and certain associated rational approximations to the transcendental mathematical constants ϕ, e and π, that arise out of considerations of both: (1) the Euler relation for the division of the sphere into vertices, V, faces, F, and edges, E, and: (2) its simple algebraic transformation into the so-called Schläfli relation, which is an equivalent mathematical statement for the polyhedra, in terms of parameters known as the polygonality, defined as n = 2E/F, and the connectivivty, defined as p = 2E/V. It is thus the transformation to the Schläfli relation from the Euler relation, in particular, that enables one to move from a simple heuristic mapping of the polyhedra in the space of V, F and E, into a corresponding heuristic mapping into Schläfli-space, the space circumscribed by the parameters of n and p. It is also true, that this latter transformation equation, the Schläfli relation, applies only directly to the polyhedra, again, with their corresponding Schläfli symbols (n, p), but as a bonus, there is a direct 1-to-1 mapping result for the polyhedra, that can be seen to also be extendable to the tessellations in 2-dimensions, and the networks in 3-dimensions, in terms of coordinates in a 2-dimensional Cartesian grid, represented as the Schläfli symbols (n, p), as discussed above, which do not involve rigorous solutions to the Schläfli relation. For while one could never identify the triplet set of integers (V, F, E) for the tessellations and networks, that would fit as a rational solution within the Euler relation, it is in fact possible for one to identify the corresponding values of the ordered pair (n, p) for any tessellation or network. The identification of the Schläfli symbol (n, p) for the tessellations and networks emerges from the formulation of its so-called Well’s point symbol, through the proper translation of that Well’s point symbol into an equivalent and unambiguous Schläfli symbol (n, p) for a given tessellation or network, as has been shown by Bucknum et al. previously. What we report in this communication, are the computations of some, certain Schläfli symbols (n, p) for the so-called Waserite (also called platinate, Pt$_{3}$O$_{4}$, a 3-,4-connected cubic pattern), Moravia (A$_{3}$B$_{8}$, a 3-,8-connected cubic pattern) and Kentuckia (ABC$_{2}$, a 4-,6-,8-connected tetragonal pattern) networks, and some topological descriptors of other relevant structures. It is thus seen, that the computations of the polygonality and connectivity indexes, n and p, that are found as a consequence of identifying the Schläfli symbols for these relatively simple networks, lead to simple and direct connections to certain rational approximations to the transcendental mathematical constants ϕ, e and π, that, to the author’s knowledge, have not been identified previously. Such rational approximations lead to elementary and straightforward methods to estimate these mathematical constants to an accuracy of better than 99 parts in 100. |
| Starting Page | 117 |
| Ending Page | 138 |
| Page Count | 22 |
| File Format | |
| ISSN | 02599791 |
| Journal | Journal of Mathematical Chemistry |
| Volume Number | 46 |
| Issue Number | 1 |
| e-ISSN | 15728897 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2008-08-21 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Chemical topology Crystalline matter Transcendental numbers ϕ, e and π Math. Applications in Chemistry Theoretical and Computational Chemistry Physical Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|