Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Luo, Le Thomas, J. E. |
| Copyright Year | 2008 |
| Abstract | Strongly interacting Fermi gases provide a clean and controllable laboratory system for modeling strong interparticle interactions between fermions in nature, from high temperature superconductors to neutron matter and quark-gluon plasmas. Model-independent thermodynamic measurements, which do not require theoretical models for calibrations, are very important for exploring this important system experimentally, as they enable direct tests of predictions based on the best current non-perturbative many-body theories. At Duke University, we use all-optical methods to produce a strongly interacting Fermi gas of spin-1/2-up and spin-1/2-down $^{6}$Li atoms that is magnetically tuned near a collisional (Feshbach) resonance. We conduct a series of measurements on the thermodynamic properties of this unique quantum gas, including the energy E, entropy S, and sound velocity c. Our model-independent measurements of E and S enable a precision study of the finite temperature thermodynamics. The E(S) data are directly compared to several recent predictions. The temperature in both the superfluid and normal fluid regime is obtained from the fundamental thermodynamic relation T=∂ E/∂ S by parameterizing the E(S) data using two different power laws that are joined with continuous E and T at a certain entropy S $_{c}$, where the fit is optimized. We observe a significant change in the scaling of E with S above and below S $_{c}$. Taking the fitted value of S $_{c}$ as an estimate of the critical entropy for a superfluid-normal fluid phase transition in the strongly interacting Fermi gas, we estimate the critical parameters. Our E(S) data are also used to experimentally calibrate the endpoint temperatures obtained for adiabatic sweeps of the magnetic field between the ideal and strongly interacting regimes. This enables the first experimental calibration of the temperature scale used in experiments on fermionic pair condensation, where the ideal Fermi gas temperature is measured before sweeping the magnetic field to the strongly interacting regime. Our calibration shows that the ideal gas temperature measured for the onset of pair condensation corresponds closely to the critical temperature T $_{c}$ estimated in the strongly interacting regime from the fits to our E(S) data. We also calibrate the empirical temperature employed in studies of the heat capacity and obtain nearly the same T $_{c}$. We determine the ground state energy by three different methods, using sound velocity measurements, by extrapolating E(S) to S=0 and by measuring the ratio of the cloud sizes in the strongly and weakly interacting regimes. The results are in very good agreement with recent predictions. Finally, using universal thermodynamic relations, we estimate the chemical potential and heat capacity of the trapped gas from the E(S) data. |
| Starting Page | 1 |
| Ending Page | 29 |
| Page Count | 29 |
| File Format | |
| ISSN | 00222291 |
| Journal | Journal of Low Temperature Physics |
| Volume Number | 154 |
| Issue Number | 1-2 |
| e-ISSN | 15737357 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2008-11-11 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Fermi gas Strong interactions Thermodynamics Superfluidity Phase transition Critical parameters Degenerate Fermi gases Magnetism, Magnetic Materials Characterization and Evaluation of Materials Condensed Matter |
| Content Type | Text |
| Resource Type | Article |
| Subject | Atomic and Molecular Physics, and Optics Condensed Matter Physics Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|