Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Fried, Joel R. |
| Copyright Year | 2006 |
| Abstract | A combination of quantum chemistry, molecular dynamics, and Monte Carlo methods have been used to investigate gas diffusion and solubility in three isomeric poly[di(butoxyphosphazenes)] and in amorphous and crystalline states of poly[bis(2,2,2-trifluoroethoxyphosphazene)] (PTFEP). In this review of recently published studies reported from our laboratory, conclusions are reached in regards to the relationship between polymer structure and gas diffusion and sorption in poly(organophosphazenes). These conclusions also serve to validate our current understanding of the nature of gas transport in other polymers. Specifically, gas diffusivity has been shown to increase with increasing side-chain and main-chain mobility as determined from vectorial autocorrelation function analysis; however, high diffusivity is accompanied by a loss in diffusive selectivity resulting in decreasing permselectivity with increasing permeability. Simulation of crystalline supercells of PTFEP indicate that gas diffusion is unrestricted in the crystalline state as has been reported only for a few other polymers, principally poly(4-methyl-1-pentene). Gas solubility in poly(organophosphazenes) correlates well with gas condensability as measured by the Lennard–Jones potential well depth parameter, ɛ/k. Exceptions are cases where specific interactions can occur between gas molecules and the polymer chain such as is the case of CO$_{2}$ and PTFEP. High-level ab initio calculations of the interaction of CO$_{2}$ with low-molecular-weight fluoroalkanes indicate the presence of a weak quadrupole–dipole interaction. Association of CO$_{2}$ with the trifluoromethyl groups of the trifluoroethoxy side chain of PTFEP has been confirmed by radial distribution function (RDF) analysis of MD trajectories. Comparison between solubility coefficients obtained from Grand Canonical Monte Carlo (GCMC) simulations of amorphous cells with experimental values of microcrystalline PTFEP indicates that gas solubility in polyphosphazenes such as PTFEP that exhibit a mesophase/crystalline state is greatly reduced. |
| Starting Page | 407 |
| Ending Page | 418 |
| Page Count | 12 |
| File Format | |
| ISSN | 15741443 |
| Journal | Journal of Inorganic and Organometallic Polymers and Materials |
| Volume Number | 16 |
| Issue Number | 4 |
| e-ISSN | 15741451 |
| Language | English |
| Publisher | Kluwer Academic Publishers-Plenum Publishers |
| Publisher Date | 2006-11-29 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Poly(organophosphazenes) molecular simulations gas permeability membrane separations Polymer Sciences Organic Chemistry Inorganic Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Materials Chemistry Polymers and Plastics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|