Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Pintsuk, G. Smid, I. Döring, J. E. Hohenauer, W. Linke, J. |
| Copyright Year | 2006 |
| Abstract | The joining of tungsten to copper and the ongoing search for commercially viable production techniques is one of the challenging issues in the field of composite materials. The reason why this material combination is of essential importance is its ability to withstand erosion and high temperatures on the tungsten side and to remove big quantities of heat on the copper side. Due to the mismatch of thermal expansion and Young’s moduli, the direct joining of these two materials results in high residual and thermal stresses at the interface, ultimately reducing component lifetime. One potential answer to this problem is functionally graded structures of W and Cu, which smoothen the transition of material properties. The present study focuses on vacuum plasma spraying (120 mbar, Ar) of W/Cu-gradients and composites with defined mixing ratios. The influence of the fabrication process and the W:Cu ratio on the microstructure has been investigated and results from thermo-mechanical and thermo-physical results analyses are presented. Finite element modeling has been used to demonstrate the positive effect of gradients on the elastic and elastic–plastic response within two different model-geometries. Partial gradients, ranging from pure tungsten to 75 vol.% tungsten, exhibit the best results and improve the expected life-time performance significantly by reducing the stresses at both interfaces, W/FGM and FGM/Cu, compared to a reference interface between W and Cu. |
| Starting Page | 30 |
| Ending Page | 39 |
| Page Count | 10 |
| File Format | |
| ISSN | 00222461 |
| Journal | Journal of Materials Science |
| Volume Number | 42 |
| Issue Number | 1 |
| e-ISSN | 15734803 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2006-11-14 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Mechanics Crystallography Continuum Mechanics and Mechanics of Materials Polymer Sciences Characterization and Evaluation of Materials Materials Science |
| Content Type | Text |
| Resource Type | Article |
| Subject | Ceramics and Composites Mechanics of Materials Mechanical Engineering Polymers and Plastics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|