Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Baldan, A. |
| Copyright Year | 2002 |
| Abstract | The physical basis behind the Ostwald ripening process for two-phase mixture has been reviewed in detail, using the various theories developed to describe this process. The Ostwald ripening, also termed second phase coarsening, is generally thought to be slow, diffusion-controlled process which occurs subsequent to phase separation under extremely small under-saturation levels. The major advance for the description of this process was made when Lifshitz, Slyozov and Wagner (also known as the LSW theory) published their papers more than fourty years ago. This classical LSW theory predicts that the ripening kinetics and the particle size distribution function are applicable to dilute systems only [i.e. when the volume fraction (Q) of second phase approaces zero: Q → 0], in which particle-particle interactions are not important. After the publication of the LSW theory, many experimentalists tested the veracity of the theory. Experimentalists have confirmed the prediction of self-similar ripening behavior at long times. However, virtually none of the reported distributions are of the form predicted by the LSW theory. The reported distributions are generally broader and more symmetric than the LSW predictions. It was later realized that a major problem with the LSW approach was the mean field nature of the kinetic equation. In order to remove the zero volume fraction assumption of the LSW theory, the many theories have been developed based on the statistically averaged diffusion interaction of a particle of given size class with its surroundings, using both analytic and numerical methods. Many attempts to determine the statistically averaged growth rate of a particle either do not account for the long-range nature of the diffusional field surrounding the particle, and/or employed ad hoc assumptions in an attempt to account for the diffusional interactions between particles. The strength of the diffusional interactions between particles stems from the long range Coulombic nature of the diffusion field surrounding a particle. As a result, particle interactions occur at distances of many particle diameters and restrict the validity of LSW theory to the unrealistic limit of zero volume fraction of coarsening phase. More realistic models of the ripening process at finite-volume fractions (Q) of coarsening phase have been proposed by various workers such as Brailsford-Wynblatt (1979), Voorhees-Glicksman (1983), Marqusee-Rose (1984), Tokuyama-Kawasaki (1984), Enomoto-Tokuyama-Kawasaki (ETK) (1986), and Yao-Elder-Guo-Grant (YEGG) (1993) models. Although a great deal of progress has been made in understanding Ostwald ripening, a fully satisfactory approach has not yet been found, and it has remained a vexing problem in the field. At present, it is very difficult to determine which of these theories best describes coarsening at finite volume fraction. The statistical mechanical theories, developed to describe systems in which Q ≪ 1, employed the same microscopic equation to describe the coarsening rates of individual particles, but different techniques to perform the statistical averaging. In addition, these theories can be distinguished on yet a finer scale. All of the theories predict that the rate constant will vary as Q $^{1/2}$ in this low volume fraction limit. These theories predict that the scaled time-independent particle radius distributions become broader and more symmetric than those predicted by LSW as the volume fraction increases. Clearly more experimental and theoretical work is necessary in order to settle the subtle disagreement now existing between the various Ostwald ripening theories. |
| Starting Page | 2171 |
| Ending Page | 2202 |
| Page Count | 32 |
| File Format | |
| ISSN | 00222461 |
| Journal | Journal of Materials Science |
| Volume Number | 37 |
| Issue Number | 11 |
| e-ISSN | 15734803 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 2002-01-01 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Polymer Sciences Industrial Chemistry/Chemical Engineering Characterization and Evaluation Materials Mechanics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Ceramics and Composites Mechanics of Materials Mechanical Engineering Polymers and Plastics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|