Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Barkana, Itzhak |
| Copyright Year | 2015 |
| Abstract | In a recent paper, a few pioneers of adaptive control review the classical model reference adaptive control (MRAC) concept, where the designer is basically supposed to conceive a model of the same order as the (possibly very large) plant, and then build an adaptive controller such that the plant is stable and ultimately follows the behavior of the model. Basically, adaptive control methods based on model following assume full-state feedback or full-order observers or identifiers. These assumptions, along with supplementary prior knowledge, allowed the first rigorous proofs of stability with adaptive controllers, which at the time was a very important first result. However, in order to obtain this important mathematical result, the developers of classical MRAC took the useful scalar Optimal Control feedback signal and made it into an adaptive gain-vector of basically of the same order as the plant, which again had to multiply the plant state-vector in order to finally end with another scalar adaptive control feedback signal. It is quite known today, however, what happens when this requirement is not satisfied, and when “unmodeled dynamics” distorts the controller based on these ideal assumptions. Even though much effort has been invested to maintain stability in spite of so-called “unmodeled dynamics,” in some applications, such as large flexible structures and other real-world applications, even if one can assume that the order of the plant is known, one just cannot implement a controller of the same order as the plant (or even a “nominal” or a “dominant” part of the plant), before even mentioning the complexity of such an adaptive controller. Without entering the argument around their special reserve in relation to claimed efficiency of the particular L1-Adaptive Control methodology, this paper first shows that, after the first successful proof of stability and even under the same basic full-state availability assumption, the adaptive control itself can be reduced to just one adaptive gain (which multiplies one error signal) in single-input-single-output (SISO) systems and, as a straightforward extension, an m*m gain matrix in an m-input-m-output (MIMO) plant. Not only is stability not affected, but actually the simplified scheme also gets rid of most seemingly “inherent” problems of the adaptive control represented by classical MRAC. Moreover, proofs of stability have all been based on the so-called Barbalat’s lemma which seems to require very strict uniform continuity of signals. The apparent implications are that any discontinuity, such as square-wave input commands or just some occasionally discontinuous disturbance, may put stability of adaptive control in danger, without even mentioning such things as impulse response. Instead, based on old yet amazingly unknown extensions of LaSalle’s Invariance Principle to nonautonomous nonlinear systems, recent developments in stability analysis of nonlinear systems have mitigated or even eliminated most apparently necessary prior conditions, thus adding confidence in the robustness of adaptive scheme in real world situations. |
| Starting Page | 3 |
| Ending Page | 34 |
| Page Count | 32 |
| File Format | |
| ISSN | 09210296 |
| Journal | Journal of Intelligent & Robotic Systems |
| Volume Number | 83 |
| Issue Number | 1 |
| e-ISSN | 15730409 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2015-10-26 |
| Publisher Place | Dordrecht |
| Access Restriction | Subscribed |
| Subject Keyword | Control systems Adaptive control Stability Nonlinear systems Autonomous and nonautonomous systems Control, Robotics, Mechatronics Electrical Engineering Artificial Intelligence (incl. Robotics) Mechanical Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Industrial and Manufacturing Engineering Artificial Intelligence Control and Systems Engineering Mechanical Engineering Electrical and Electronic Engineering Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|