Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Li, Jing Rong Khoo, Li Pheng Tor, Shu Beng |
| Copyright Year | 2006 |
| Abstract | Condition-based fault diagnosis aims at identifying the root cause of a system malfunction from vast amount of condition-based monitoring information and knowledge. The needs of extracting knowledge from vast amount of information have spurred the interest in data mining, which can be categorized into two stages data preparation and knowledge extraction. It has been established that most of the current data mining approaches to fault diagnosis focus on the latter stage. In reality, condition-based monitoring data may, most of the time, contain incomplete, or missing data, which have an adverse effect on the knowledge or diagnostic rules extracted. Several approaches to deal with missing data can be found in literature. Unfortunately, all of which have serious drawbacks. In this paper, a novel approach to the treatment of incomplete data is proposed for the data preparation stage, while a rough set based approach has been developed to pre-process the data for the extraction of diagnostic rules. The two-stage data mining technique is implemented into a prototype system, RMINE, which also possesses a self-learning ability to cope with the changing condition-based data. A real industrial case study of a pump system is used to demonstrate the fault diagnosis process using RMINE. The result has shown the potential of RMINE as a general data mining prototype to condition-based fault diagnosis. |
| Starting Page | 163 |
| Ending Page | 176 |
| Page Count | 14 |
| File Format | |
| ISSN | 09565515 |
| Journal | Journal of Intelligent Manufacturing |
| Volume Number | 17 |
| Issue Number | 1 |
| e-ISSN | 15728145 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 2006-01-01 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Incomplete data rough set theory data mining fault diagnosis Manufacturing, Machines, Tools Automation and Robotics Production/Logistics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Industrial and Manufacturing Engineering Artificial Intelligence Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|