Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | Springer Nature Link |
---|---|
Author | Tukmakov, A. L. |
Copyright Year | 2015 |
Abstract | A mathematical model of the electro-gas-dynamics of a gas–particle system is described. A numerical method for solving the system of equations is proposed, and an analysis is made of the motion of charged solid aerosol particles in gas–particle flow in the electric field produced by the corona electrode of the atomizer, the grounded surface on which deposition is performed, and the charge of the aerosol particles in the interelectrode space. The solution is based on the two-velocity two-temperature model of a monodisperse medium without phase transitions and coagulation assuming that only the carrier medium, described by the Navier–Stokes equations for a compressible gas, has viscosity. The dispersed phase is defined by the equation of conservation of mass, the equations of conservation of momentum components taking into account the Coulomb force and aerodynamic friction, and the equation of conservation of internal energy. The system is written in generalized coordinates in dimensionless form and solved using the explicit McCormack method with splitting over the spatial coordinates and a conservative correction scheme. The velocity and density fields of the gas–particle mixture were investigated in the interelectrode space and near the surface on which solid aerosol particles in the gas–particle flow are deposited. |
Starting Page | 636 |
Ending Page | 643 |
Page Count | 8 |
File Format | |
ISSN | 00218944 |
Journal | Journal of Applied Mechanics and Technical Physics |
Volume Number | 56 |
Issue Number | 4 |
e-ISSN | 15738620 |
Language | English |
Publisher | Pleiades Publishing |
Publisher Date | 2015-11-18 |
Publisher Place | Moscow |
Access Restriction | One Nation One Subscription (ONOS) |
Subject Keyword | two-velocity two-temperaturemonodisperse gas–particlemixture electrical field Coulomb force Navier–Stokes equations explicit McCormack scheme Mechanics Fluid- and Aerodynamics Classical Continuum Physics Applications of Mathematics Mathematical Modeling and Industrial Mathematics Mechanical Engineering |
Content Type | Text |
Resource Type | Article |
Subject | Mechanics of Materials Condensed Matter Physics Mechanical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|