Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Bruner, Ronald F. |
| Copyright Year | 2009 |
| Abstract | It is shown that if a volume element V, of space is assumed to have intrinsic energy E, then basic principles of mechanics, thermodynamics and special relativity lead to the equation of state: E=pV, where p is the pressure. When this equation of state is incorporated in the Einstein equations it leads to the prediction that the orbital speed of matter circling a visible galaxy embedded in a spherical galactic halo should be relativistic, in disagreement with observations. However, it also leads directly to the interesting notion that the inertial mass of such a medium can be understood as a resistance to being compressed via Lorentz contraction. It is then shown that the mathematical structure of thermodynamics suggests another plausible definition of pressure if we allow for the possibility that the intrinsic energy of spacetime may not be described by the same work-energy relationship as ordinary matter. This additional possibility leads to the equation of state: E=−pV. While both of these equations of state describe forms of energy that are quite unlike ordinary energy, neither alone is able to account for observed rotational velocity curves of matter orbiting visible galaxies. Therefore, the possibility that space has two distinct components of energy is investigated. This results in a plausible, two-component equation of state in which the former equation of state is tentatively identified as the “dark matter” (DM) component, the latter as the “dark energy” (DE) component. The effective equation of state of space, accounting for the presence of both components, may then be written in the form: p=w ε, where ε is the total energy density, p the total pressure, and w represents the fractional excess of DM over DE (and therefore satisfies: −1≤w≤+1). Given the wide range of possible spacetime properties implied by this equation it appears to be a viable candidate for explaining observations presently attributed to the presence of both DM and DE. Specifically, the static, spherically symmetric solution of Einstein’s field equations, neglecting effects of ordinary matter, predicts the inverse r $^{2}$ distribution of intrinsic space energy required to explain observed constant rotational velocity curves for matter in circular orbits around visible galaxies embedded within spherically symmetric galactic halos. The proposed equation of state is also capable of describing regions of space undergoing accelerated expansion as regions where DE is dominant (i.e., w<−1/3). |
| Starting Page | 2704 |
| Ending Page | 2714 |
| Page Count | 11 |
| File Format | |
| ISSN | 00207748 |
| Journal | International Journal of Theoretical Physics |
| Volume Number | 48 |
| Issue Number | 9 |
| e-ISSN | 15729575 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2009-06-13 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Dark matter Dark energy Intrinsic energy of space Inertial mass Rotational velocity curves Work-energy relationship Equation of state of space Mathematical and Computational Physics Elementary Particles, Quantum Field Theory Quantum Physics Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|