Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Potzel, W. Bürck, U. Schindelmann, P. Hagn, H. Smirv, G. V. Popov, S. L. Gerdau, E. Shvyd’ko, Yu. V. Jäschke, J. Rüter, H. D. Chumakov, A. I. Rüffer, R. |
| Copyright Year | 2004 |
| Abstract | Interference effects in nuclear forward scattering of synchrotron radiation (NFSSR) from two spatially separated stainless-steel foils A and B mounted downstream behind each other have been investigated. Target A can be sinusoidally vibrated by high-frequency (MHz) ultrasound (US), target B is moved at a constant Doppler velocity which is large compared to the natural width of the nuclear transition. Due to this large Doppler shift radiative coupling between both targets is disrupted and the nuclear excitons in A and B develop independently in space and time after the SR pulse. As a consequence, the emission from the whole system (A&B) is dominated by the interference of the emissions from A and B. The application of US to target A is a powerful method to change the relative phasing of the emissions and thus to investigate interference effects originating from the two nuclear excitons in detail. Four distinct cases were studied: (a) If target A is kept stationary and only B is moved at large constant velocityv, the interference pattern exhibits a Quantum Beat (QB) whose period is determined byv. (b) If, in addition, target A is sinusoidally vibrated in a piston-like motion by US and the initial US phase Φ0 is locked to the SR pulse, the QB is frequency modulated by the US. The variation of the QB frequency increases with the US modulation indexm. (c) In the case that Φ0 is not synchronized to the SR pulse (phase averaging over Φ0) drastic changes of the amplitude and phase reversals of the QB pattern occur in the time regions around odd multiples of half of the US period. (d) If Φ0 is not synchronized to the SR pulse and the US motion is no longer pistonlike, the NFSSR intensity has to be averaged over both Φ0 andm (amplitude) of the US motion. Surprisingly the QB interference pattern does not vanish completely but a short QB signal remains at times of the full US period even at high values ofm. All NFSSR patterns investigated are interpreted and quantitatively described by the dynamical theory. |
| Starting Page | 263 |
| Ending Page | 281 |
| Page Count | 19 |
| File Format | |
| ISSN | 03043843 |
| Journal | Hyperfine Interactions |
| Volume Number | 151 |
| Issue Number | 1-4 |
| e-ISSN | 15729540 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2004-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | Subscribed |
| Subject Keyword | coherent nuclear forward scattering nuclear exciton interference of synchrotron radiation quantum beats radiative coupling frequency modulation ultra sound Nuclear Physics, Heavy Ions, Hadrons Atoms, Molecules, Clusters and Plasmas Condensed Matter Surfaces and Interfaces, Thin Films |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nuclear and High Energy Physics Atomic and Molecular Physics, and Optics Physical and Theoretical Chemistry Condensed Matter Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|