Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Lin, Feng Min Chao, Chang Tai |
| Copyright Year | 2013 |
| Abstract | Although not design-unbiased, the ratio estimator is recognized as more efficient when a certain degree of correlation exists between the variable of primary interest and the auxiliary variable. Meanwhile, the Rao–Blackwell method is another commonly used procedure to improve estimation efficiency. Various improved ratio estimators under adaptive cluster sampling (ACS) that make use of the auxiliary information together with the Rao–Blackwellized univariate estimators have been proposed in past research studies. In this article, the variances and the associated variance estimators of these improved ratio estimators are proposed for a thorough framework of statistical inference under ACS. Performance of the proposed variance estimators is evaluated in terms of the absolute relative percentage bias and the empirical mean-squared error. As expected, results show that both the absolute relative percentage bias and the empirical mean-squared error decrease as the initial sample size increases for all the variance estimators. To evaluate the confidence intervals based on these variance estimators and the finite-population Central Limit Theorem, the coverage rate and the interval width are used. These confidence intervals suffer a disadvantage similar to that of the conventional ratio estimator. Hence, alternative confidence intervals based on a certain type of adjusted variance estimators are constructed and assessed in this article. |
| Starting Page | 285 |
| Ending Page | 311 |
| Page Count | 27 |
| File Format | |
| ISSN | 13528505 |
| Journal | Environmental and Ecological Statistics |
| Volume Number | 21 |
| Issue Number | 2 |
| e-ISSN | 15733009 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2013-06-08 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Adaptive cluster sampling Confidence interval Minimal sufficient statistic Ratio estimator Sufficient statistic Variance estimator Ecology Statistics Mathematical and Computational Biology Evolutionary Biology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistics and Probability Environmental Science Statistics, Probability and Uncertainty |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|