Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Ando, Shin Thamphongphan, Theerasak Seki, Yoichi Suzuki, Eishin |
| Copyright Year | 2013 |
| Abstract | The numerical, sequential observation of behaviors, such as trajectories, have become an important subject for data mining and knowledge discovery research. Processing the raw observation into representative features of the behaviors involves an implicit choice of time-scale and resolution, which critically affect the final output of the mining techniques. The choice is associated with the parameters of data-processing, e.g., smoothing and segmentation, which unintuitively yet strongly influence the intrinsic structure of the numerical data. Data mining techniques generally require users to provide an appropriately processed input, but selecting a resolution is an arduous task that may require an expensive, manual examination of outputs between different settings. In this paper, we propose a novel ensemble framework for aggregating outcomes in different settings of scale and resolution parameters for an anomaly detection task. Such a task is difficult for existing ensemble approaches based on weighted combination because: (a) evaluating and weighing an output requires training samples of anomalies which are generally unavailable, (b) the detectability of anomalies can depend on the resolution, i.e., the distinction from normal instances may only be apparent within a small, selective range of parameters. In the proposed framework, predictions based on different resolutions are aggregated to construct meta-feature representations of the behavior instances. The meta-features provide the discriminative information for conducting a clustering-based anomaly detection. In the proposed framework, two interrelated tasks of the behavior analysis: processing the numerical data and discovering anomalous patterns, are addressed jointly, providing an intuitive alternative for a knowledge-intensive parameter selection. We also design an efficient clustering-based anomaly detection algorithm which reduces the computational burden of mining at multiple resolutions. We conduct an empirical study of the proposed framework using real-world trajectory data. It shows that the proposed framework achieves a significant improvement over the conventional ensemble approach. |
| Starting Page | 39 |
| Ending Page | 83 |
| Page Count | 45 |
| File Format | |
| ISSN | 13845810 |
| Journal | Data Mining and Knowledge Discovery |
| Volume Number | 29 |
| Issue Number | 1 |
| e-ISSN | 1573756X |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2013-08-01 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Behavioral data mining Trajectory data mining Multi-resolution features Ensemble anomaly detection Data Mining and Knowledge Discovery Artificial Intelligence (incl. Robotics) Information Storage and Retrieval Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Networks and Communications Information Systems Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|