Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Zghidi, Imen |
| Copyright Year | 2017 |
| Abstract | In most industrial contexts, decisions are made based on incomplete information. This is due to the fact that decision makers cannot be certain of the future behavior of factors that will affect the outcome resulting from various options under consideration. Stochastic Constraint Satisfaction Problems provide a powerful modeling framework for problems in which one is required to take decisions under uncertainty. In these stochastic problems, the uncertainty is modeled by using discrete random variables to capture uncontrollable factors like the customer demands, the processing times of machines, house prices, etc. These discrete random variables can take on a set of possible different values, each with an associated probability and are useful to model factors that fall outside the control of the decision maker who only knows the probability distribution function of these random variables which can be forecasted, for instance, by looking at the past behavior of such factors. There are controllable variables on which one can decide, named decision variables which allow to model the set of possible choices for the decisions to be made. Finally, such problems comprise chance constraints which express the relationship between random and decision variables that should be satisfied within a satisfaction probability threshold – since finding decisions that will always satisfy the constraints in an uncertain environment is almost impossible.If the random variables’ support set is infinite, the number of scenarios would be infinite. Hence, finding a solution in such cases is impossible in general. In this thesis, within the context of an infinite set of scenarios, we propose a novel notion of statistical consistency. Statistical consistency lifts the notion of consistency of deterministic constraints to infinite chance constraints. The essence of this novel notion of consistency is to be able to make an inference, in the presence of infinite scenarios in an uncertain environment, based on a restricted finite subset of scenarios with a certain confidence level and a threshold error. The confidence level is the probability that characterises the extent to which our inference, based on a subset of scenarios, is correct whereas the threshold error is the error range that we can tolerate while making such an inference. The statistical consistency acknowledges the fact that making a perfect inference in an uncertain environment and with an infinite number of scenarios is impossible. The statistical consistency, thus, with its reliance on a limited number of scenarios, a confidence level, and a threshold error constitutes a valid and an appropriate practical road that one can take in order to tackle infinite chance constraints.We design two novel approaches based on confidence intervals to enforce statistical consistency as well as a novel third approach based on hypothesis testing. We analyze the various methods theoretically as well as experimentally. Our empirical evaluation shows the weaknesses and strengths of each of the three methods in making a correct inference from a restricted subset of scenarios for enforcing statistical consistency. Overall, while the first two methods are able to make a correct inference in most of the cases, the third is a superior, effective, and robust one in all cases. |
| Starting Page | 101 |
| Ending Page | 102 |
| Page Count | 2 |
| File Format | |
| ISSN | 13837133 |
| Journal | Constraints |
| Volume Number | 22 |
| Issue Number | 1 |
| e-ISSN | 15729354 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2017-01-06 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Artificial Intelligence (incl. Robotics) Optimization Computing Methodologies Operation Research/Decision Theory |
| Content Type | Text |
| Resource Type | Article |
| Subject | Discrete Mathematics and Combinatorics Artificial Intelligence Computational Theory and Mathematics Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|