Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Ambikasaran, Sivaram Kitanidis, Peter K. Darve, Eric Li, Judith Yue |
| Copyright Year | 2013 |
| Abstract | Stochastic inverse modeling deals with the estimation of functions from sparse data, which is a problem with a nonunique solution, with the objective to evaluate best estimates, measures of uncertainty, and sets of solutions that are consistent with the data. As finer resolutions become desirable, the computational requirements increase dramatically when using conventional solvers. A method is developed in this paper to solve large-scale stochastic linear inverse problems, based on the hierarchical matrix (or ℋ 2 matrix) approach. The proposed approach can also exploit the sparsity of the underlying measurement operator, which relates observations to unknowns. Conventional direct algorithms for solving large-scale linear inverse problems, using stochastic linear inversion techniques, typically scale as 𝒪(n 2 m+nm 2), where n is the number of measurements and m is the number of unknowns. We typically have n ≪ m. In contrast, the algorithm presented here scales as 𝒪(n 2 m), i.e., it scales linearly with the larger problem dimension m. The algorithm also allows quantification of uncertainty in the solution at a computational cost that also grows only linearly in the number of unknowns. The speedup gained is significant since the number of unknowns m is often large. The effectiveness of the algorithm is demonstrated by solving a realistic crosswell tomography problem by formulating it as a stochastic linear inverse problem. In the case of the crosswell tomography problem, the sparsity of the measurement operator allows us to further reduce the cost of our proposed algorithm from 𝒪(n 2 m) to $\mathcal {O}(n^{2} \sqrt {m} + nm)$ . The computational speedup gained by using the new algorithm makes it easier, among other things, to optimize the location of sources and receivers, by minimizing the mean square error of the estimation. Without this fast algorithm, this optimization would be computationally impractical using conventional methods. |
| Ending Page | 927 |
| Page Count | 15 |
| Starting Page | 913 |
| File Format | |
| ISSN | 14200597 |
| e-ISSN | 15731499 |
| Journal | Computational Geosciences |
| Issue Number | 6 |
| Volume Number | 17 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2013-07-31 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Computational methods Earth Sciences Numerical linear algebra Geotechnical Engineering & Applied Earth Sciences Large-scale problems Hierarchical matrices Hydrogeology Other matrix algorithms Stochastic inverse modeling Geostatistical estimation Tomography Subsurface imaging Mathematical Modeling and Industrial Mathematics Soil Science & Conservation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computers in Earth Sciences Computational Theory and Mathematics Computer Science Applications Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|