Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Zhang, Yanfen Liu, Ning Oliver, Dean S. |
| Copyright Year | 2009 |
| Abstract | The ensemble Kalman filter (EnKF) has been shown repeatedly to be an effective method for data assimilation in large-scale problems, including those in petroleum engineering. Data assimilation for multiphase flow in porous media is particularly difficult, however, because the relationships between model variables (e.g., permeability and porosity) and observations (e.g., water cut and gas–oil ratio) are highly nonlinear. Because of the linear approximation in the update step and the use of a limited number of realizations in an ensemble, the EnKF has a tendency to systematically underestimate the variance of the model variables. Various approaches have been suggested to reduce the magnitude of this problem, including the application of ensemble filter methods that do not require perturbations to the observed data. On the other hand, iterative least-squares data assimilation methods with perturbations of the observations have been shown to be fairly robust to nonlinearity in the data relationship. In this paper, we present EnKF with perturbed observations as a square root filter in an enlarged state space. By imposing second-order-exact sampling of the observation errors and independence constraints to eliminate the cross-covariance with predicted observation perturbations, we show that it is possible in linear problems to obtain results from EnKF with observation perturbations that are equivalent to ensemble square-root filter results. Results from a standard EnKF, EnKF with second-order-exact sampling of measurement errors that satisfy independence constraints (EnKF (SIC)), and an ensemble square-root filter (ETKF) are compared on various test problems with varying degrees of nonlinearity and dimensions. The first test problem is a simple one-variable quadratic model in which the nonlinearity of the observation operator is varied over a wide range by adjusting the magnitude of the coefficient of the quadratic term. The second problem has increased observation and model dimensions to test the EnKF (SIC) algorithm. The third test problem is a two-dimensional, two-phase reservoir flow problem in which permeability and porosity of every grid cell (5,000 model parameters) are unknown. The EnKF (SIC) and the mean-preserving ETKF (SRF) give similar results when applied to linear problems, and both are better than the standard EnKF. Although the ensemble methods are expected to handle the forecast step well in nonlinear problems, the estimates of the mean and the variance from the analysis step for all variants of ensemble filters are also surprisingly good, with little difference between ensemble methods when applied to nonlinear problems. |
| Starting Page | 249 |
| Ending Page | 261 |
| Page Count | 13 |
| File Format | |
| ISSN | 14200597 |
| Journal | Computational Geosciences |
| Volume Number | 14 |
| Issue Number | 2 |
| e-ISSN | 15731499 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2009-07-22 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Ensemble Kalman filter Second-order-exact sampling Square-root filter Nonlinearity Sequential data assimilation Mathematical Modeling and Industrial Mathematics Soil Science & Conservation Hydrogeology Geotechnical Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computers in Earth Sciences Computational Theory and Mathematics Computer Science Applications Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|