Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Al Haj, Hassan Lavie, Alon |
| Copyright Year | 2011 |
| Abstract | Morphologically rich languages pose a challenge for statistical machine translation (SMT). This challenge is magnified when translating into a morphologically rich language. In this work we address this challenge in the framework of a broad-coverage English-to-Arabic phrase based statistical machine translation (PBSMT). We explore the largest-to-date set of Arabic segmentation schemes ranging from full word form to fully segmented forms and examine the effects on system performance. Our results show a difference of 2.31 BLEU points averaged over all test sets between the best and worst segmentation schemes indicating that the choice of the segmentation scheme has a significant effect on the performance of an English-to-Arabic PBSMT system in a large data scenario. We show that a simple segmentation scheme can perform as well as the best and more complicated segmentation scheme. An in-depth analysis on the effect of segmentation choices on the components of a PBSMT system reveals that text fragmentation has a negative effect on the perplexity of the language models and that aggressive segmentation can significantly increase the size of the phrase table and the uncertainty in choosing the candidate translation phrases during decoding. An investigation conducted on the output of the different systems, reveals the complementary nature of the output and the great potential in combining them. |
| Starting Page | 3 |
| Ending Page | 24 |
| Page Count | 22 |
| File Format | |
| ISSN | 09226567 |
| Journal | Machine Translation |
| Volume Number | 26 |
| Issue Number | 1-2 |
| e-ISSN | 15730573 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2011-09-22 |
| Publisher Place | Dordrecht |
| Access Restriction | Subscribed |
| Subject Keyword | Arabic machine translation Arabic segmentation Arabic detokenization English to Arabic translation Artificial Intelligence (incl. Robotics) Computational Linguistics Language Translation and Linguistics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence Software Linguistics and Language |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|