Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Poletaev, N. I. |
| Copyright Year | 2016 |
| Abstract | A possibility of determining the regime of combustion of individual fuel particles on the basis of the dependence of the flame velocity on the fuel and oxidizer concentrations is considered by an example of a dust flame of microsized metal particles with diameters d 10 < 15 μm and particle concentrations from ≈1010 to 1011 m−3 in oxygen-containing media at atmospheric pressure. The combustion mode (kinetic or diffusion) is responsible for the qualitative difference in the character of the normal velocity of the flame as a function of the basic parameters of the gas suspension. The analysis of such experimental dependences for fuel-rich mixtures shows that combustion of zirconium particles (d 10 = 4 μm) in a laminar dust flame is controlled by oxidizer diffusion toward the particle surface, whereas combustion of iron particles of a similar size is controlled by kinetics of heterogeneous reactions. For aluminum particles with d 10 = 5–15 μm, there are no clearly expressed features of either kinetic or diffusion mode of combustion. To obtain more information about the processes responsible for combustion of fine aluminum particles, the flame velocity is studied as a function of the particle size and initial temperature of the gas suspension. It is demonstrated that aluminum particles under the experimental conditions considered in this study burn in the transitional mode. |
| Starting Page | 673 |
| Ending Page | 682 |
| Page Count | 10 |
| File Format | |
| ISSN | 00105082 |
| Journal | Combustion, Explosion and Shock Waves |
| Volume Number | 52 |
| Issue Number | 6 |
| e-ISSN | 15738345 |
| Language | English |
| Publisher | Pleiades Publishing |
| Publisher Date | 2016-12-24 |
| Publisher Place | Moscow |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | dust flame of metals flame propagation velocity particle burning law diffusion and kinetic modes of combustion Classical Mechanics Classical and Continuum Physics Physical Chemistry Vibration, Dynamical Systems, Control Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Physics and Astronomy Fuel Technology Chemical Engineering Energy Engineering and Power Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|