Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Li, Ren Cang |
| Copyright Year | 1997 |
| Abstract | LetB be anm×n (m≥n) complex (or real) matrix. It is known that there is a uniquepolar decomposition B=QH, whereQ*Q=I, then×n identity matrix, andH is positive definite, providedB has full column rank. Existing perturbation bounds suggest that in the worst case, for complex matrices the change inQ be proportional to the reciprocal ofB's least singular value, or the reciprocal of the sum ofB's least and second least singular values if matrices are real. However, there are situations where this unitary polar factor is much more accurately determined by the data than the existing perturbation bounds would indicate. In this paper the following question is addressed: how much mayQ change ifB is perturbed to $$\tilde B = D_1^* BD_2 $$ , whereD 1 andD 2 are nonsingular and close to the identity matrices of suitable dimensions? It is shown that for a such kind of perturbation, the change inQ is bounded only by the distances fromD 1 andD 2 to identity matrices and thus is independent ofB's singular values. Such perturbation is restrictive, but not unrealistic. We show how a frequently used scaling technique yields such a perturbation and thus scaling may result in better-conditioned polar decompositions. |
| Ending Page | 75 |
| Page Count | 9 |
| Starting Page | 67 |
| File Format | |
| ISSN | 00063835 |
| e-ISSN | 15729125 |
| Journal | BIT Numerical Mathematics |
| Issue Number | 1 |
| Volume Number | 37 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 1997-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Eigenvalues, singular values, and eigenvectors relative perturbation theory scaling Computational Mathematics and Numerical Analysis Factorization of matrices Numeric Computing Mathematics polar decomposition Matrix norms, conditioning, scaling |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Computer Networks and Communications Computational Mathematics Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|