Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Mitchell, Myron J. Lovett, Gary Bailey, Scott Beall, Fred Burns, Doug Buso, Don Clair, Thomas A. Courchesne, Francois Duchesne, Louis Eimers, Cathy Fernandez, Ivan Houle, Daniel Jeffries, Dean S. Likens, Gene E. Moran, Michael D. Rogers, Christopher Schwede, Donna Shanley, Jamie Weathers, Kathleen C. Vet, Robert |
| Copyright Year | 2010 |
| Abstract | Most of eastern North America receives elevated levels of atmospheric deposition of sulfur (S) that result from anthropogenic SO2 emissions from fossil fuel combustion. Atmospheric S deposition has acidified sensitive terrestrial and aquatic ecosystems in this region; however, deposition has been declining since the 1970s, resulting in some recovery in previously acidified aquatic ecosystems. Accurate watershed S mass balances help to evaluate the extent to which atmospheric S deposition is retained within ecosystems, and whether internal cycling sources and biogeochemical processes may be affecting the rate of recovery from decreasing S atmospheric loads. This study evaluated S mass balances for 15 sites with watersheds in southeastern Canada and northeastern US for the period 1985 to 2002. These 15 sites included nine in Canada (Turkey Lakes, ON; Harp Lake, ON; Plastic Lake, ON; Hermine, QC; Lake Laflamme, QC; Lake Clair, QC; Lake Tirasse, QC; Mersey, NS; Moosepit, NS) and six in the US (Arbutus Lake, NY; Biscuit Brook, NY; Sleepers River, VT; Hubbard Brook Experimental Forest, NH; Cone Pond, NH; Bear Brook Watershed, ME). Annual S wet deposition inputs were derived from measured bulk or wet-only deposition and stream export was obtained by combining drainage water fluxes with SO4 2− concentrations. Dry deposition has the greatest uncertainty of any of the mass flux calculations necessary to develop accurate watershed balances, and here we developed a new method to calculate this quantity. We utilized historical information from both the US National Emissions Inventory and the US (CASTNET) and the Canadian (CAPMoN) dry deposition networks to develop a formulation that predicted SO2 concentrations as a function of SO2 emissions, latitude and longitude. The SO2 concentrations were used to predict dry deposition using relationships between concentrations and deposition flux derived from the CASTNET or CAPMoN networks. For the year 2002, we compared the SO2 concentrations and deposition predictions with the predictions of two continental-scale air quality models, the Community Multiscale Air Quality (CMAQ) model and A Unified Regional Air-quality Modeling System (AURAMS) that utilize complete inventories of emissions and chemical budgets. The results of this comparison indicated that the predictive relationship provides an accurate representation of SO2 concentrations and S deposition for the region that is generally consistent with these models, and thus provides confidence that our approach could be used to develop accurate watershed S budgets for these 15 sites. Most watersheds showed large net losses of SO4 2− on an annual basis, and the watershed mass balances were grouped into five categories based on the relative value of mean annual net losses or net gains. The net annual fluxes of SO4 2− showed a strong relationship with hydrology; the largest net annual negative fluxes were associated with years of greatest precipitation amount and highest discharge. The important role of catchment hydrology on S budgets suggests implications for future predicted climate change as it affects patterns of precipitation and drought. The sensitivity of S budgets is likely to be greatest in watersheds with the greatest wetland area, which are particularly sensitive to drying and wetting cycles. A small number of the watersheds in this analysis were shown to have substantial S sources from mineral weathering, but most showed evidence of an internal source of SO4 2−, which is likely from the mineralization of organic S stored from decades of increased S deposition. Mobilization of this internal S appears to contribute about 1–6 kg S ha−1 year−1 to stream fluxes at these sites and is affecting the rate and extent of recovery from acidification as S deposition rates have declined in recent years. This internal S source should be considered when developing critical deposition loads that will promote ecosystem recovery from acidification and the depletion of nutrient cations in the northeastern US and southeastern Canada. |
| Starting Page | 181 |
| Ending Page | 207 |
| Page Count | 27 |
| File Format | |
| ISSN | 01682563 |
| Journal | Biogeochemistry |
| Volume Number | 103 |
| Issue Number | 1-3 |
| e-ISSN | 1573515X |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2010-05-19 |
| Publisher Place | Dordrecht |
| Access Restriction | Subscribed |
| Subject Keyword | Watersheds Sulfur budgets Atmospheric deposition models Acidic deposition Recovery Northeast US Southeast Canada Ecosystems Life Sciences Environmental Chemistry Biogeosciences |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth-Surface Processes Environmental Chemistry Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|