Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Wang, Tiejian Zhang, Zhiwu Jing, Xiaoyuan Zhang, Liqiang |
| Copyright Year | 2015 |
| Abstract | Software defect prediction aims to predict the defect proneness of new software modules with the historical defect data so as to improve the quality of a software system. Software historical defect data has a complicated structure and a marked characteristic of class-imbalance; how to fully analyze and utilize the existing historical defect data and build more precise and effective classifiers has attracted considerable researchers’ interest from both academia and industry. Multiple kernel learning and ensemble learning are effective techniques in the field of machine learning. Multiple kernel learning can map the historical defect data to a higher-dimensional feature space and make them express better, and ensemble learning can use a series of weak classifiers to reduce the bias generated by the majority class and obtain better predictive performance. In this paper, we propose to use the multiple kernel learning to predict software defect. By using the characteristics of the metrics mined from the open source software, we get a multiple kernel classifier through ensemble learning method, which has the advantages of both multiple kernel learning and ensemble learning. We thus propose a multiple kernel ensemble learning (MKEL) approach for software defect classification and prediction. Considering the cost of risk in software defect prediction, we design a new sample weight vector updating strategy to reduce the cost of risk caused by misclassifying defective modules as non-defective ones. We employ the widely used NASA MDP datasets as test data to evaluate the performance of all compared methods; experimental results show that MKEL outperforms several representative state-of-the-art defect prediction methods. |
| Starting Page | 569 |
| Ending Page | 590 |
| Page Count | 22 |
| File Format | |
| ISSN | 09288910 |
| Journal | Automated Software Engineering |
| Volume Number | 23 |
| Issue Number | 4 |
| e-ISSN | 15737535 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2015-04-07 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Software defect prediction Multiple kernel learning Ensemble learning Multiple kernel ensemble learning (MKEL) Artificial Intelligence (incl. Robotics) Software Engineering/Programming and Operating Systems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|