Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Schatzman, E. |
| Copyright Year | 1999 |
| Abstract | The aim of this work is to present a transport process which is likely to have a great importance for the internal constitution of the stars. In order to set the problem, we first give a short presentation of the physical properties of the Sun and stars, described usually under the names of `Standard Solar Model' or `Standard Stellar Models' (SSM). Next we show that an important question about SSM is that they do not explain the age dependance of lithium deficiency of stars of known age: stars of galactic clusters and the Sun. It has been suggested a long time ago to assume the presence of a macrosocpic diffusion process in the radiative zone, below the surface convective zone of solar like stars. It is then possible for the lithium present in the convective zone to be carried to the thermonuclear burning level below the convective zone. The first assumption was that differential rotation generates turbulence and therefore that a turbulent diffusion process takes place. However, this model predicts a lithium abundance which is strongly rotation dependant, contrary to the observations. Furthermore, the diffusion coefficient being large all over the radiative zone, it prevents the possibility of gravitational separation by diffusion and consequently leads to an impossibility of explaining the difference of helium abundance between the surface and the center of the Sun. The consequence is obviously that we need to take into account another physical process. Stars having a mass M < 1.3 M ⊙ have a convective zone which begins close to the stellar surface and extends down to a depth which is an appreciable fraction of stellar radius. In the convective zone, strong stochastic motions take care, at least partially, of heat transfer. These motions do not vanish at the lower boundary and generate internal waves into the radiative zone. These random internal waves are at the origin of a diffusion process which can be considered as responsible of the diffusive transport of lithium down to the lithium burning level. This is certainly not the only physical process responsible of lithium deficiency in main sequence stars, but its properties open the way to a completely consistent analysis of lithium deficiency. The model of generation of gravity waves is based on a model of heat transport in the convective zone by diving plumes. The horizontal component of the turbulent motion at the boundary of the convective zone is supposed to generate the horizontal motion of internal waves. The result is a large horizontal component of the diffusion coefficient, which produces in a short time an horizontal uniform chemical composition. It is known that gravity waves, in the absence of any dissipative process, cannot generate vertical mixing. Therefore, the vertical component of the diffusion coefficient is entirely dependant of radiative damping. It decreases quickly in the radiative zone, but is large enough to be responsible of lithium burning. Due to the radial dependance of velocity amplitude, the diffusion coeficient increases when approaching the stellar center. However, very close to the center, non-linear dissipative and radiative damping of internal waves become large and the diffusion coefficient vanishes at the very center. The development of this abstract can be found in E. Schatzman (1996, J. Fluid Mech. 322, 355). |
| Starting Page | 97 |
| Ending Page | 97 |
| Page Count | 1 |
| File Format | |
| ISSN | 0004640X |
| Journal | Astrophysics and Space Science |
| Volume Number | 265 |
| Issue Number | 1-4 |
| e-ISSN | 1572946X |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 1999-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Astronomy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Astronomy and Astrophysics Space and Planetary Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|