Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Ma, Peter C. Ewan, Tim Jainski, Christopher Lu, Louise Dreizler, Andreas Sick, Volker Ihme, Matthias |
| Copyright Year | 2016 |
| Abstract | The performance, efficiency and emissions of internal combustion (IC) engines are affected by the thermo-viscous boundary layer region and heat transfer. Computational models for the prediction of engine performance typically rely on equilibrium wall-function models to overcome the need for resolving the viscous boundary layer structure. The wall shear stress and heat flux are obtained as boundary conditions for the outer flow calculation. However, these equilibrium wall-function models are typically derived by considering canonical flow configurations, introducing substantial modeling assumptions that are not necessarily justified for in-cylinder flows. The objective of this work is to assess the validity of several model approximations that are commonly introduced in the development of wall-function models for IC-engine applications. This examination is performed by considering crank-angle resolved high-resolution micro-particle image velocimetry (µ-PIV) measurements in a spark-ignition direct-injection single cylinder engine. Using these measurements, the performance of an algebraic equilibrium wall-function model commonly used in RANS and LES IC-engine simulations is evaluated. By identifying shortcomings of this model, a non-equilibrium differential wall model is developed and two different closures are considered for the determination of the turbulent viscosity. It is shown that both wall models provide adequate predictions if applied inside the viscous sublayer. However, the equilibrium wall-function model consistently underpredicts the shear stress if applied in the log-layer. In contrast, the non-equilibrium wall model provides improved predictions of the near-wall region and shear stress irrespective of the wall distance and the piston location. By utilizing the experimental data, significant adverse pressure gradients due to the large vortical motion inside the cylinder (induced by tumble, swirl and turbulence) are observed and included in the non-equilibrium wall model to further improve the model performance. These investigations are complemented by developing a consistent wall heat transfer model, and simulation results are compared against the equilibrium wall-function model and Woschni’s empirical correlation. |
| Starting Page | 283 |
| Ending Page | 309 |
| Page Count | 27 |
| File Format | |
| ISSN | 13866184 |
| Journal | Flow, Turbulence and Combustion |
| Volume Number | 98 |
| Issue Number | 1 |
| e-ISSN | 15731987 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2016-04-28 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Thermoviscous boundary layer Non-equilibrium wall model IC-engine Heat transfer Turbulent boundary layer Engineering Fluid Dynamics Fluid- and Aerodynamics Engineering Thermodynamics, Heat and Mass Transfer Automotive Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Physical and Theoretical Chemistry Chemical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|