Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Yu, Yonghong Wang, Can Wang, Hao Gao, Yang |
| Copyright Year | 2016 |
| Abstract | Recommender systems have attracted lots of attention since they alleviate the information overload problem for users. Matrix factorization is one of the most widely employed collaborative filtering techniques in the research of recommender systems due to its effectiveness and efficiency in dealing with very large user-item rating matrices. Recently, additional information, such as social network and user demographics, have been adopted by several recommendation algorithms to provide useful insights for matrix factorization techniques. However, most of them focus on dealing with the cold start user problem and ignore the cold start item problem. In addition, there are few suitable similarity measures for these content enhanced matrix factorization approaches to compute the similarity between categorical items. In this paper, we propose an attributes coupling based matrix factorization method by incorporating item-attribute information into the matrix factorization model as well as adopting coupled object similarity to capture the relationship among items. Item-attribute information is formed as an item relationship regularization term to constrain the process of matrix factorization. Experimental results on two real data sets show that our proposed method outperforms the state-of-the-art recommendation algorithms and can effectively cope with the cold start item problem when such item-attribute information is available. |
| Starting Page | 521 |
| Ending Page | 533 |
| Page Count | 13 |
| File Format | |
| ISSN | 0924669X |
| Journal | Applied Intelligence |
| Volume Number | 46 |
| Issue Number | 3 |
| e-ISSN | 15737497 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2016-09-16 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Recommender systems Matrix factorization Collaborative filtering Coupled object similarity Artificial Intelligence (incl. Robotics) Mechanical Engineering Manufacturing, Machines, Tools |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|