Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | da, Kuniaki Yamaguchi, Yuki Nakadai, Kazuhiro Oku, Hiroshi G. Ogata, Tetsuya |
| Copyright Year | 2014 |
| Abstract | Audio-visual speech recognition (AVSR) system is thought to be one of the most promising solutions for reliable speech recognition, particularly when the audio is corrupted by noise. However, cautious selection of sensory features is crucial for attaining high recognition performance. In the machine-learning community, deep learning approaches have recently attracted increasing attention because deep neural networks can effectively extract robust latent features that enable various recognition algorithms to demonstrate revolutionary generalization capabilities under diverse application conditions. This study introduces a connectionist-hidden Markov model (HMM) system for noise-robust AVSR. First, a deep denoising autoencoder is utilized for acquiring noise-robust audio features. By preparing the training data for the network with pairs of consecutive multiple steps of deteriorated audio features and the corresponding clean features, the network is trained to output denoised audio features from the corresponding features deteriorated by noise. Second, a convolutional neural network (CNN) is utilized to extract visual features from raw mouth area images. By preparing the training data for the CNN as pairs of raw images and the corresponding phoneme label outputs, the network is trained to predict phoneme labels from the corresponding mouth area input images. Finally, a multi-stream HMM (MSHMM) is applied for integrating the acquired audio and visual HMMs independently trained with the respective features. By comparing the cases when normal and denoised mel-frequency cepstral coefficients (MFCCs) are utilized as audio features to the HMM, our unimodal isolated word recognition results demonstrate that approximately 65 % word recognition rate gain is attained with denoised MFCCs under 10 dB signal-to-noise-ratio (SNR) for the audio signal input. Moreover, our multimodal isolated word recognition results utilizing MSHMM with denoised MFCCs and acquired visual features demonstrate that an additional word recognition rate gain is attained for the SNR conditions below 10 dB. |
| Starting Page | 722 |
| Ending Page | 737 |
| Page Count | 16 |
| File Format | |
| ISSN | 0924669X |
| Journal | Applied Intelligence |
| Volume Number | 42 |
| Issue Number | 4 |
| e-ISSN | 15737497 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2014-12-20 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Audio-visual speech recognition Feature extraction Deep learning Multi-stream HMM Artificial Intelligence (incl. Robotics) Mechanical Engineering Manufacturing, Machines, Tools |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|