Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Guo, Chun Zhou, Yajian Ping, Yuan Zhang, Zhongkun Liu, Guole Yang, Yixian |
| Copyright Year | 2013 |
| Abstract | Intrusion detection systems based on a hybrid approach have attracted considerable interest from researchers. Hybrid classifiers are able to provide improved detection accuracy, but usually have a complex structure and high computational costs. In this research, we propose a new and easy-to-implement hybrid learning method, named distance sum-based support vector machine (DSSVM), which can be used as an effective intrusion detection model. In DSSVM, we introduce the distance sum, a correlation between each data sample and cluster centers. Consider a data set represented by n-dimensional feature vectors, each distance sum for a data sample in the data set is obtained from the distances between this data sample and k−1 of k cluster centers found by a clustering algorithm. A new data set representing the features of these distance sums is formed and used to train a support vector machine classifier. By applying DSSVM to the KDD’99 data set, our experimental results show that the proposed hybrid method performs well in both detection performance and computational cost, which suggests it is a competitive candidate for intrusion detection. In addition, we also use six databases with different numbers of features, classes, and data samples to further validate the effectiveness of our method for some other pattern recognition problems. |
| Starting Page | 178 |
| Ending Page | 188 |
| Page Count | 11 |
| File Format | |
| ISSN | 0924669X |
| Journal | Applied Intelligence |
| Volume Number | 40 |
| Issue Number | 1 |
| e-ISSN | 15737497 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2013-06-13 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Intrusion detection Hybrid classifiers Support vector machine Euclidean distance function Pattern recognition Artificial Intelligence (incl. Robotics) Mechanical Engineering Manufacturing, Machines, Tools |
| Content Type | Text |
| Resource Type | Article |
| Subject | Artificial Intelligence |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|