Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Rounds, William C. Zhang, Guo‐Qiang |
| Copyright Year | 1997 |
| Abstract | We consider a reinterpretation of the rules of default logic. We make Reiter’s default rules into a constructive method of building models, not theories. To allow reasoning in first‐order systems, we equip standard first‐order logic with a (new) Kleene 3‐valued partial model semantics. Then, using our methodology, we add defaults to this semantic system. The result is that our logic is an ordinary monotonic one, but its semantics is now nonmonotonic. Reiter’s extensions now appear in the semantics, not in the syntax. As an application, we show that this semantics gives a partial solution to the conceptual problems with open defaults pointed out by Lifschitz [V. Lifschitz, On open defaults, in: Proceedings of the Symposium on Computational Logics (1990)], and Baader and Hollunder [F. Baader and B. Hollunder, Embedding defaults into terminological knowledge representation formalisms, in: Proceedings of Third Annual Conference on Knowledge Representation (Morgan‐Kaufmann, 1992)]. The solution is not complete, chiefly because in making the defaults model‐theoretic, we can only add conjunctive information to our models. This is in contrast to default theories, where extensions can contain disjunctive formulas, and therefore disjunctive information. Our proposal to treat the problem of open defaults uses a semantic notion of nonmonotonic entailment for our logic, related to the idea of “only knowing”. Our notion is “only having information” given by a formula. We discuss the differences between this and “minimal‐knowledge” ideas. Finally, we consider the Kraus–Lehmann–Magidor [S. Kraus, D. Lehmann and M. Magidor, Nonmonotonic reasoning, preferential models, and cumulative logics, Artificial Intelligence 44 (1990) 167–207] axioms for preferential consequence relations. We find that our consequence relation satisfies the most basic of the laws, and the Or law, but it does not satisfy the law of Cut, nor the law of Cautious Monotony. We give intuitive examples using our system, on the other hand, which on the surface seem to violate these two laws. We make some comparisons, using our examples, to probabilistic interpretations for which these laws are true, and we compare our models to the cumulative models of Kraus, Lehmann, and Magidor. We also show sufficient conditions for the laws to hold. These involve limiting the use of disjunction in our formulas in one way or another. We show how to make use of the theory of complete partially ordered sets, or domain theory. We can augment any Scott domain with a default set. We state a version of Reiter’s extension operator on arbitrary domains as well. This version makes clear the basic order‐theoretic nature of Reiter’s definitions. A three‐variable function is involved. Finding extensions corresponds to taking fixed points twice, with respect to two of these variables. In the special case of precondition‐free defaults, a general relation on Scott domains induced from the set of defaults is shown to characterize extensions. We show how a general notion of domain theory, the logic induced from the Scott topology on a domain, guides us to a correct notion of “affirmable sentence” in a specific case such as our first‐order systems. We also prove our consequence laws in such a way that they hold not only in first‐order systems, but in any logic derived from the Scott topology on an arbitrary domain. |
| Starting Page | 195 |
| Ending Page | 226 |
| Page Count | 32 |
| File Format | |
| ISSN | 10122443 |
| Journal | Annals of Mathematics and Artificial Intelligence |
| Volume Number | 20 |
| Issue Number | 1-4 |
| e-ISSN | 15737470 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 1997-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Computer Science Artificial Intelligence (incl. Robotics) Mathematics Complexity |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Artificial Intelligence |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|