WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Language
    অসমীয়া বাংলা भोजपुरी डोगरी English ગુજરાતી हिंदी ಕನ್ನಡ
    Khasi कोंकणी मैथिली മലയാളം ꯃꯤꯇꯩ ꯂꯣꯟ मराठी Mizo नेपाली
    ଓଡ଼ିଆ ਪੰਜਾਬੀ संस्कृत ᱥᱟᱱᱛᱟᱲᱤ सिन्धी தமிழ் తెలుగు اردو
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Analog Integrated Circuits and Signal Processing
  2. Analog Integrated Circuits and Signal Processing : Volume 84
  3. Analog Integrated Circuits and Signal Processing : Volume 84, Issue 2, August 2015
  4. A novel low voltage CMOS controllable fuzzy inference circuit
Loading...

Please wait, while we are loading the content...

Analog Integrated Circuits and Signal Processing : Volume 92
Analog Integrated Circuits and Signal Processing : Volume 91
Analog Integrated Circuits and Signal Processing : Volume 90
Analog Integrated Circuits and Signal Processing : Volume 89
Analog Integrated Circuits and Signal Processing : Volume 88
Analog Integrated Circuits and Signal Processing : Volume 87
Analog Integrated Circuits and Signal Processing : Volume 86
Analog Integrated Circuits and Signal Processing : Volume 85
Analog Integrated Circuits and Signal Processing : Volume 84
Analog Integrated Circuits and Signal Processing : Volume 84, Issue 3, September 2015
Analog Integrated Circuits and Signal Processing : Volume 84, Issue 2, August 2015
A novel low voltage CMOS controllable fuzzy inference circuit
A novel topology for modular frequency dividers with enhanced speed and power efficiency
Improving power efficiency of a two-stage operational amplifier for biomedical applications
A general method for analog test point selection using multi-frequency analysis
Chaotic binary bat algorithm for analog test point selection
A 2:1 switched-capacitor DC–DC converter for low power circuits
Design of a synchronous boost DC–DC converter with constant current mode control in MPP
High voltage DC–AC conversion in standard 1.2 V CMOS technology
A broadband CMOS RF receiver for digital broadcasting systems
A design of 50/150/200 kbps, low power FSK transceiver using phase-locked loop with programmable loop bandwidth and integrated SPDT for IEEE 802.15.4g application
Legendre wavelet for power amplifier linearization
Pulse-width modulation based fully-digital transmitter with wide CF and high resolution
A 0.74 mW, linear-in-dB, constant bandwidth, variable gain amplifier based on zero-pole repositioning technique
Inverter-based low-noise, 150 µW single-ended to differential SC-VGAs for second harmonic cardiac ultrasound imaging probes
Slew-rate Boosted Amplifier Integrated in a Digital Input Driver for Automotive Actuator Control Units
Improved tri-state buffer in MOS current mode logic and its application
Analog Integrated Circuits and Signal Processing : Volume 84, Issue 1, July 2015
Analog Integrated Circuits and Signal Processing : Volume 83
Analog Integrated Circuits and Signal Processing : Volume 82
Analog Integrated Circuits and Signal Processing : Volume 81
Analog Integrated Circuits and Signal Processing : Volume 80
Analog Integrated Circuits and Signal Processing : Volume 79
Analog Integrated Circuits and Signal Processing : Volume 78
Analog Integrated Circuits and Signal Processing : Volume 77
Analog Integrated Circuits and Signal Processing : Volume 76
Analog Integrated Circuits and Signal Processing : Volume 75
Analog Integrated Circuits and Signal Processing : Volume 74
Analog Integrated Circuits and Signal Processing : Volume 73
Analog Integrated Circuits and Signal Processing : Volume 72
Analog Integrated Circuits and Signal Processing : Volume 71
Analog Integrated Circuits and Signal Processing : Volume 70
Analog Integrated Circuits and Signal Processing : Volume 69
Analog Integrated Circuits and Signal Processing : Volume 68
Analog Integrated Circuits and Signal Processing : Volume 67
Analog Integrated Circuits and Signal Processing : Volume 66
Analog Integrated Circuits and Signal Processing : Volume 65
Analog Integrated Circuits and Signal Processing : Volume 64
Analog Integrated Circuits and Signal Processing : Volume 63
Analog Integrated Circuits and Signal Processing : Volume 62
Analog Integrated Circuits and Signal Processing : Volume 61
Analog Integrated Circuits and Signal Processing : Volume 60
Analog Integrated Circuits and Signal Processing : Volume 59
Analog Integrated Circuits and Signal Processing : Volume 58
Analog Integrated Circuits and Signal Processing : Volume 57
Analog Integrated Circuits and Signal Processing : Volume 56
Analog Integrated Circuits and Signal Processing : Volume 55
Analog Integrated Circuits and Signal Processing : Volume 54
Analog Integrated Circuits and Signal Processing : Volume 53
Analog Integrated Circuits and Signal Processing : Volume 52
Analog Integrated Circuits and Signal Processing : Volume 51
Analog Integrated Circuits and Signal Processing : Volume 50
Analog Integrated Circuits and Signal Processing : Volume 49
Analog Integrated Circuits and Signal Processing : Volume 48
Analog Integrated Circuits and Signal Processing : Volume 47
Analog Integrated Circuits and Signal Processing : Volume 46
Analog Integrated Circuits and Signal Processing : Volume 45
Analog Integrated Circuits and Signal Processing : Volume 44
Analog Integrated Circuits and Signal Processing : Volume 43
Analog Integrated Circuits and Signal Processing : Volume 42
Analog Integrated Circuits and Signal Processing : Volume 41
Analog Integrated Circuits and Signal Processing : Volume 40
Analog Integrated Circuits and Signal Processing : Volume 39
Analog Integrated Circuits and Signal Processing : Volume 38
Analog Integrated Circuits and Signal Processing : Volume 37
Analog Integrated Circuits and Signal Processing : Volume 36
Analog Integrated Circuits and Signal Processing : Volume 35
Analog Integrated Circuits and Signal Processing : Volume 34
Analog Integrated Circuits and Signal Processing : Volume 33
Analog Integrated Circuits and Signal Processing : Volume 32
Analog Integrated Circuits and Signal Processing : Volume 31
Analog Integrated Circuits and Signal Processing : Volume 30
Analog Integrated Circuits and Signal Processing : Volume 29
Analog Integrated Circuits and Signal Processing : Volume 28
Analog Integrated Circuits and Signal Processing : Volume 27
Analog Integrated Circuits and Signal Processing : Volume 26
Analog Integrated Circuits and Signal Processing : Volume 25
Analog Integrated Circuits and Signal Processing : Volume 24
Analog Integrated Circuits and Signal Processing : Volume 23
Analog Integrated Circuits and Signal Processing : Volume 22
Analog Integrated Circuits and Signal Processing : Volume 21
Analog Integrated Circuits and Signal Processing : Volume 20
Analog Integrated Circuits and Signal Processing : Volume 19
Analog Integrated Circuits and Signal Processing : Volume 18
Analog Integrated Circuits and Signal Processing : Volume 17
Analog Integrated Circuits and Signal Processing : Volume 16
Analog Integrated Circuits and Signal Processing : Volume 15
Analog Integrated Circuits and Signal Processing : Volume 14
Analog Integrated Circuits and Signal Processing : Volume 13
Analog Integrated Circuits and Signal Processing : Volume 12

Similar Documents

...
A novel current-mode min–max circuit

Article

...
CMOS-based near zero-offset multiple inputs max–min circuits and its applications

Article

...
Sub 0.5-V bulk-driven winner take all circuit based on a new voltage follower

Article

...
Novel Voltage-Tunable, Low-Voltage Linear CMOS Transconductor

Article

...
Adaptively-biased MOSFET for low voltage CMOS analog circuits

Article

...
Current compensation techniques for low-voltage high-performance current mirror circuits

Article

...
Integrated control circuit for adaptive sampling

Article

...
Low-power interface circuits between adiabatic and standard CMOS circuits

Article

...
Ultra low-voltage CMOS current mirrors

Article

A novel low voltage CMOS controllable fuzzy inference circuit

Content Provider Springer Nature Link
Author Ranjbar, Mahnaz Karimi, Gholamreza Razaghian, Farhad
Copyright Year 2015
Abstract Fuzzy inference is one of the most important parts of a fuzzy logic controller (FLC), which has been implemented by several operators between the rules of controller, such as min or max operators. In this paper a new low voltage CMOS circuit is presented to implement min–max operators. This circuit has many advantages such as mixed input signal, which increases the flexibility and controllability of FLC, low power consumption, simple and symmetrical circuit and small die area due to a few number of transistors. These advantages are useful in circuits that require both operators in the specific conditions. The proposed circuit has been designed using 90 nm, 1.5 V CMOS standard in Hspice simulator. Simulation results demonstrate that the power consumption of this circuit is only about 40 µW, furthermore it has the delay time and error of less than 1 ns and 1.4 % respectively. (98.6 % accuracy).
Starting Page 149
Ending Page 160
Page Count 12
File Format PDF
ISSN 09251030
Journal Analog Integrated Circuits and Signal Processing
Volume Number 84
Issue Number 2
e-ISSN 15731979
Language English
Publisher Springer US
Publisher Date 2015-06-09
Publisher Place New York
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Min and max circuit Fuzzy logic controller (FLC) Fuzzy inference CMOS technology Circuits and Systems Electrical Engineering Signal, Image and Speech Processing
Content Type Text
Resource Type Article
Subject Surfaces, Coatings and Films Signal Processing Hardware and Architecture
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
Cite this Content
Loading...