WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Language
    অসমীয়া বাংলা भोजपुरी डोगरी English ગુજરાતી हिंदी ಕನ್ನಡ
    Khasi कोंकणी मैथिली മലയാളം ꯃꯤꯇꯩ ꯂꯣꯟ मराठी Mizo नेपाली
    ଓଡ଼ିଆ ਪੰਜਾਬੀ संस्कृत ᱥᱟᱱᱛᱟᱲᱤ सिन्धी தமிழ் తెలుగు اردو
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Analog Integrated Circuits and Signal Processing
  2. Analog Integrated Circuits and Signal Processing : Volume 73
  3. Analog Integrated Circuits and Signal Processing : Volume 73, Issue 2, November 2012
  4. Power consumption benchmarking for reconfigurable platforms
Loading...

Please wait, while we are loading the content...

Analog Integrated Circuits and Signal Processing : Volume 92
Analog Integrated Circuits and Signal Processing : Volume 91
Analog Integrated Circuits and Signal Processing : Volume 90
Analog Integrated Circuits and Signal Processing : Volume 89
Analog Integrated Circuits and Signal Processing : Volume 88
Analog Integrated Circuits and Signal Processing : Volume 87
Analog Integrated Circuits and Signal Processing : Volume 86
Analog Integrated Circuits and Signal Processing : Volume 85
Analog Integrated Circuits and Signal Processing : Volume 84
Analog Integrated Circuits and Signal Processing : Volume 83
Analog Integrated Circuits and Signal Processing : Volume 82
Analog Integrated Circuits and Signal Processing : Volume 81
Analog Integrated Circuits and Signal Processing : Volume 80
Analog Integrated Circuits and Signal Processing : Volume 79
Analog Integrated Circuits and Signal Processing : Volume 78
Analog Integrated Circuits and Signal Processing : Volume 77
Analog Integrated Circuits and Signal Processing : Volume 76
Analog Integrated Circuits and Signal Processing : Volume 75
Analog Integrated Circuits and Signal Processing : Volume 74
Analog Integrated Circuits and Signal Processing : Volume 73
Analog Integrated Circuits and Signal Processing : Volume 73, Issue 3, December 2012
Analog Integrated Circuits and Signal Processing : Volume 73, Issue 2, November 2012
Introduction to the special issue on software defined radio: selected papers from the Wireless Innovation Forum’s SDR’11-WinnComm
LTE uplink MIMO receiver with low complexity interference cancellation
Combined multiuser signal classification and blind equalization
Low complexity scalable MIMO sphere detection through antenna detection reordering
Resource management implications and strategies for SDR clouds
Automatic classification of multiple signals using 2D matching of magnitude–frequency density features
Enhanced low-complexity detector design for embedded cyclostationary signatures
Spectrum sharing method for secondary systems using frequency priority table to reduce inter-secondary interference
Polyphase channelizers for fully digital frequency hopping systems
Cascade linear phase recursive half-band filters implement the most efficient digital down converter
An integrated low power system architecture for spectrum sensing enabled cognitive radios
Implementation of parallel lattice reduction-aided MIMO detector using graphics processing unit
Implementation of an SDR system using an MPI-based GPU cluster for WiMAX and LTE
Efficient GPU and CPU-based LDPC decoders for long codewords
Systematic MIMO OFDM transceiver implementation for MPSoCs: a nucleus based approach
On the use of an algebraic language interface for waveform definition
Cognitive radio testing using psychometric approaches: applicability and proof of concept study
Parametric optimization of software defined radio configurations using design of experiments
Power consumption benchmarking for reconfigurable platforms
Analog Integrated Circuits and Signal Processing : Volume 73, Issue 1, October 2012
Analog Integrated Circuits and Signal Processing : Volume 72
Analog Integrated Circuits and Signal Processing : Volume 71
Analog Integrated Circuits and Signal Processing : Volume 70
Analog Integrated Circuits and Signal Processing : Volume 69
Analog Integrated Circuits and Signal Processing : Volume 68
Analog Integrated Circuits and Signal Processing : Volume 67
Analog Integrated Circuits and Signal Processing : Volume 66
Analog Integrated Circuits and Signal Processing : Volume 65
Analog Integrated Circuits and Signal Processing : Volume 64
Analog Integrated Circuits and Signal Processing : Volume 63
Analog Integrated Circuits and Signal Processing : Volume 62
Analog Integrated Circuits and Signal Processing : Volume 61
Analog Integrated Circuits and Signal Processing : Volume 60
Analog Integrated Circuits and Signal Processing : Volume 59
Analog Integrated Circuits and Signal Processing : Volume 58
Analog Integrated Circuits and Signal Processing : Volume 57
Analog Integrated Circuits and Signal Processing : Volume 56
Analog Integrated Circuits and Signal Processing : Volume 55
Analog Integrated Circuits and Signal Processing : Volume 54
Analog Integrated Circuits and Signal Processing : Volume 53
Analog Integrated Circuits and Signal Processing : Volume 52
Analog Integrated Circuits and Signal Processing : Volume 51
Analog Integrated Circuits and Signal Processing : Volume 50
Analog Integrated Circuits and Signal Processing : Volume 49
Analog Integrated Circuits and Signal Processing : Volume 48
Analog Integrated Circuits and Signal Processing : Volume 47
Analog Integrated Circuits and Signal Processing : Volume 46
Analog Integrated Circuits and Signal Processing : Volume 45
Analog Integrated Circuits and Signal Processing : Volume 44
Analog Integrated Circuits and Signal Processing : Volume 43
Analog Integrated Circuits and Signal Processing : Volume 42
Analog Integrated Circuits and Signal Processing : Volume 41
Analog Integrated Circuits and Signal Processing : Volume 40
Analog Integrated Circuits and Signal Processing : Volume 39
Analog Integrated Circuits and Signal Processing : Volume 38
Analog Integrated Circuits and Signal Processing : Volume 37
Analog Integrated Circuits and Signal Processing : Volume 36
Analog Integrated Circuits and Signal Processing : Volume 35
Analog Integrated Circuits and Signal Processing : Volume 34
Analog Integrated Circuits and Signal Processing : Volume 33
Analog Integrated Circuits and Signal Processing : Volume 32
Analog Integrated Circuits and Signal Processing : Volume 31
Analog Integrated Circuits and Signal Processing : Volume 30
Analog Integrated Circuits and Signal Processing : Volume 29
Analog Integrated Circuits and Signal Processing : Volume 28
Analog Integrated Circuits and Signal Processing : Volume 27
Analog Integrated Circuits and Signal Processing : Volume 26
Analog Integrated Circuits and Signal Processing : Volume 25
Analog Integrated Circuits and Signal Processing : Volume 24
Analog Integrated Circuits and Signal Processing : Volume 23
Analog Integrated Circuits and Signal Processing : Volume 22
Analog Integrated Circuits and Signal Processing : Volume 21
Analog Integrated Circuits and Signal Processing : Volume 20
Analog Integrated Circuits and Signal Processing : Volume 19
Analog Integrated Circuits and Signal Processing : Volume 18
Analog Integrated Circuits and Signal Processing : Volume 17
Analog Integrated Circuits and Signal Processing : Volume 16
Analog Integrated Circuits and Signal Processing : Volume 15
Analog Integrated Circuits and Signal Processing : Volume 14
Analog Integrated Circuits and Signal Processing : Volume 13
Analog Integrated Circuits and Signal Processing : Volume 12

Similar Documents

...
FPGA implementation of high-speed neural network for power amplifier behavioral modeling

Article

...
FPGA-implementation of dynamic time delay neural network for power amplifier behavioral modeling

Article

...
An efficient parallel architecture for ray-tracing

Article

...
Parasitic compensation in CCI-based circuits for reduced power consumption

Article

...
A Low-Power Reconfigurable Analog Filter for UMTS/WLAN Receivers

Article

...
Power consumption of analog circuits: a tutorial

Article

...
Power harvesting with PZT ceramics and circuits design

Article

...
FPGA implementation and testing of a 128 FFT for a MB-OFDM receiver

Article

...
A software-defined radio FPGA implementation of OFDM-based PHY transceiver for 5G

Article

Power consumption benchmarking for reconfigurable platforms

Content Provider Springer Nature Link
Author Pitkänen, Teemu Jamieson, Peter Becker, Tobias Moisio, Sami Takala, Jarmo
Copyright Year 2012
Abstract Software defined radios (SDR) wideband mobile terminals must be capable of data processing while consuming low power and keeping the design and manufacturing costs as low as possible. SDR can combine high performance signal processing and flexibility, but power efficiency of SDR nodes is an issue that needs to be addressed. Analysis of power consumption for various target technologies is challenging, since each technology typically contains its own benchmarking tools and thus, results are not comparable. In this paper, we illustrate how the GroundHog2009 benchmark suite, designed to be platform independent, can be used to evaluate power dissipation of four modern FPGAs and one microcontroller. We also introduce a generic RTL library for the GroundHog2009 design cases and test bench infra-structure to make the toolset usage easy. In addition, we show that power can be saved by using clock management, available on one of the FGPA-boards. The power savings range from 38 to 1,150 %.
Starting Page 649
Ending Page 659
Page Count 11
File Format PDF
ISSN 09251030
Journal Analog Integrated Circuits and Signal Processing
Volume Number 73
Issue Number 2
e-ISSN 15731979
Language English
Publisher Springer US
Publisher Date 2012-09-08
Publisher Place Boston
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Power consumption GroundHog2009 FPGA Benchmark Signal, Image and Speech Processing Circuits and Systems Electrical Engineering
Content Type Text
Resource Type Article
Subject Surfaces, Coatings and Films Signal Processing Hardware and Architecture
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
Cite this Content
Loading...