Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Hoefkens, Jens Berz, Martin Maki, Kyoko |
| Copyright Year | 2003 |
| Abstract | Ordinary differential equations (ODEs), including high-order implicit equations, describe important problems in mechanical and chemical engineering. However, the use of self-validated methods providing rigorous enclosures of the solution has mostly been limited to explicit and weakly nonlinear problems, and no general-purpose algorithm for the validated integration of general ODE initial value problems has been developed. Since most integration techniques for Differential Algebraic Equations (DAEs) are based on transformation to implicit ODEs, the integration of DAE initial value problems has traditionally been restricted to few hand-picked problems from the relatively small class of low-index systems. The recently developed Taylor model method combines high-order differential algebraic descriptions of functional dependencies with intervals for verification. It has proven its power in several applications, including verified integration of ODEs under avoidance of the wrapping effect. Recognizing antiderivation (integration) as a natural operation on Taylor models yields methods that treat DEs within a fully differential algebraic context as implicit equations made of conventional functions and antiderivation. This method has the potential to be applied to high-index DAE problems and allows the computation of guaranteed enclosures of final conditions from large initial regions for large classes of initial value problems. In the framework of this method, a Taylor model represents the highest derivative of the solution function occurring in the DE and all lower derivatives are treated as antiderivatives of this Taylor model. Consequently, one obtains a set of implicit equations involving only the highest derivative. Utilizing methods of verified inversion of functional dependencies described by Taylor models allows the computation of a guaranteed enclosure of the solution in the form of a Taylor model. The performance of the method is illustrated by detailed examples. |
| Starting Page | 231 |
| Ending Page | 253 |
| Page Count | 23 |
| File Format | |
| ISSN | 10197168 |
| Journal | Advances in Computational Mathematics |
| Volume Number | 19 |
| Issue Number | 1-3 |
| e-ISSN | 15729044 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 2003-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Theory of Computation Numeric Computing Mathematics Algebra Calculus of Variations and Optimal Control Optimization |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|