Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Womersley, Robert S. Sloan, Ian H. |
| Copyright Year | 2001 |
| Abstract | This paper explores the quality of polynomial interpolation approximations over the sphere S r−1⊂R r in the uniform norm, principally for r=3. Reimer [17] has shown there exist fundamental systems for which the norm ‖Λ n ‖ of the interpolation operator Λ n , considered as a map from C(S r−1) to C(S r−1), is bounded by d n , where d n is the dimension of the space of all spherical polynomials of degree at most n. Another bound is d n 1/2(λavg/λmin )1/2, where λavg and λmin are the average and minimum eigenvalues of a matrix G determined by the fundamental system of interpolation points. For r=3 these bounds are (n+1)2 and (n+1)(λavg/λmin )1/2, respectively. In a different direction, recent work by Sloan and Womersley [24] has shown that for r=3 and under a mild regularity assumption, the norm of the hyperinterpolation operator (which needs more point values than interpolation) is bounded by O(n 1/2), which is optimal among all linear projections. How much can the gap between interpolation and hyperinterpolation be closed?For interpolation the quality of the polynomial interpolant is critically dependent on the choice of interpolation points. Empirical evidence in this paper suggests that for points obtained by maximizing λmin , the growth in ‖Λ n ‖ is approximately n+1 for n<30. This choice of points also has the effect of reducing the condition number of the linear system to be solved for the interpolation weights. Choosing the points to minimize the norm directly produces fundamental systems for which the norm grows approximately as 0.7n+1.8 for n<30. On the other hand, ‘minimum energy points’, obtained by minimizing the potential energy of a set of (n+1)2 points on S 2, turn out empirically to be very bad as interpolation points.This paper also presents numerical results on uniform errors for approximating a set of test functions, by both interpolation and hyperinterpolation, as well as by non-polynomial interpolation with certain global basis functions. |
| Starting Page | 195 |
| Ending Page | 226 |
| Page Count | 32 |
| File Format | |
| ISSN | 10197168 |
| Journal | Advances in Computational Mathematics |
| Volume Number | 14 |
| Issue Number | 3 |
| e-ISSN | 15729044 |
| Language | English |
| Publisher | Kluwer Academic Publishers |
| Publisher Date | 2001-01-01 |
| Publisher Place | Dordrecht |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Theory of Computation Numeric Computing Mathematics Algebra Calculus of Variations and Optimal Control Optimization |
| Content Type | Text |
| Resource Type | Article |
| Subject | Applied Mathematics Computational Mathematics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|