Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Ricci, Alessandro Canavese, Giancarlo Ferrante, Ivan Marasso, Simone Luigi Ricciardi, Carlo |
| Copyright Year | 2013 |
| Abstract | Resonating microplates appear as ideal candidates for microcantilever-based real-time biosensing, because their low planar aspect ratio allows for effectively large Q factors, even in highly viscous fluids like water and other biological liquids. Since, a complete analytical treatment of a plate vibrating in liquid is missing; a fully numerical approach is needed for an effective design of a microcantilever-based Lab-On-Chip, as well as for its correct operation. We here report on a three-dimensional finite element model for an accurate and general solution methodology of the Fluid–Structure interaction for a plate vibrating in a transverse flexural mode within a viscous fluid environment. The model directly allows extracting vibration mode shapes, frequencies and Q factors through an eigenfrequency analysis, thus avoiding time-consuming and time-dependent simulations. A benchmark with the available analytical results (that rely on the classical beam theory) and a comparison with experimental data on a fabricated microcantilever-based Lab-On-Chip confirm the accuracy and the reliability of our numerical calculations. The here proposed model works in a very general context, without limitations about the cantilever planar geometry and material, as well as about the shape of the fluid domain. |
| Starting Page | 275 |
| Ending Page | 284 |
| Page Count | 10 |
| File Format | |
| ISSN | 16134982 |
| Journal | Microfluidics and Nanofluidics |
| Volume Number | 15 |
| Issue Number | 2 |
| e-ISSN | 16134990 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-02-06 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Microcantilever Finite element method Microplate Resonator Lab-On-Chip Fluid–Structure interaction Engineering Fluid Dynamics Biomedical Engineering Analytical Chemistry Nanotechnology and Microengineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology Materials Chemistry Condensed Matter Physics Electronic, Optical and Magnetic Materials |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|