Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Stiels, Darius Schidelko, Kathrin Engler, Jan O. Elzen, Renate Rödder, Dennis |
| Copyright Year | 2011 |
| Abstract | Human transport and commerce have led to an increased spread of non-indigenous species. Alien invasive species can have major impacts on many aspects of ecological systems. Therefore, the ability to predict regions potentially suitable for alien species, which are hence at high risk, has become a core task for successful management. The Common Waxbill Estrilda astrild is a widespread African species, which has been successfully introduced to many parts of the world. Herein, we used MAXENT software, a machine-learning algorithm, to assess its current potential distribution based on species records compiled from various sources. Models were trained separately with records from the species’ native range and from both invaded and native ranges. Subsequently, the models were projected onto different future climate change scenarios. They successfully identified the species known range as well as some regions that seem climatically well suited, where the Common Waxbill is not yet recorded. Assuming future conditions, the models suggest poleward range shifts. However, its potential distribution pattern within its tropical native and invasive ranges appears to be more complex. Although the results of both separate analyses showed general similarities, many differences have become obvious. Niche overlap analysis shows that the invasive range includes only a small fraction of the ecological space that can be found in the native range. Thus, we tentatively prefer the model based on native locations only, but in particular, we highlight the importance of the selection process of species records for modelling invasive species.Weltweiter Handel und Mobilität haben zu einer zunehmenden Ausbreitung nicht-heimischer Arten geführt. Invasive Arten können großen Einfluss auf zahlreiche Aspekte ökosystemarer Zusammenhänge haben. Deshalb ist die Fähigkeit, Regionen vorherzusagen, die für solche Arten potentiell geeignet und daher möglicherweise bedroht sind, eine Kernaufgabe erfolgreichen Managements. Der Wellenastrild Estrilda astrild ist eine weit verbreitete afrikanische Art, die erfolgreich in viele Gebiete der Welt eingeführt wurde. Mit Hilfe der Software MAXENT, einem Algorithmus, der auf maschinellem Lernen basiert, haben wir seine gegenwärtige, potentielle Verbreitung basierend auf Fundpunkten aus verschiedenen Quellen modelliert. Die Modelle wurden sowohl mit Nachweisen aus dem heimischen als auch dem invasiven und heimischen Verbreitungsgebiet gemeinsam trainiert. Nachfolgend wurden beide auf unterschiedliche zukünftige Klimawandelszenarien projiziert. Die Modelle identifizierten erfolgreich sowohl das bekannte Verbreitungsgebiet der Art, als auch Gebiete, die klimatisch gut geeignet erscheinen, in denen der Wellenastrild aber noch nicht nachgewiesen wurde. Unter zukünftigen Bedingungen legen die Modelle eine polwärts gerichtete Verschiebung der Verbreitungsgebiete nahe, obwohl die Muster der potentiellen Verbreitung innerhalb der Tropen des heimischen und invasiven Areals komplexer erscheinen. Trotz allgemeiner Übereinstimmung zwischen beiden Analysen wurden einige Unterschiede auffällig. Eine Analyse des Überlappungsbereiches der Nischen ergab, dass invasive Fundpunkte innerhalb des ökologischen Raumes liegen, der durch die Fundpunkte aus dem natürlichen Verbreitungsgebiet aufgespannt wird. Wir tendieren daher vorsichtig zu dem Modell basierend auf der natürlichen Verbreitung, unterstreichen aber vor allem die Bedeutung des Auswahlprozesses der Fundorte für Modellierungen invasiver Arten. |
| Starting Page | 769 |
| Ending Page | 780 |
| Page Count | 12 |
| File Format | |
| ISSN | 00218375 |
| Journal | Journal für Ornithologie |
| Volume Number | 152 |
| Issue Number | 3 |
| e-ISSN | 14390361 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2011-02-12 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Ecological niche modelling Species distribution model Niche overlap MAXENT Climate change Invasive species Evolutionary Biology Zoology Animal Ecology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Animal Science and Zoology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|