Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Golding, Amber Leigh Dong, Zhongmin |
| Copyright Year | 2010 |
| Abstract | Both climate change and the adverse effects of chemical use on human and environmental health are recognized as serious issues of global concern. Nowhere is this more apparent than in the agricultural sector where release of greenhouse gases such as carbon dioxide, nitrous oxide and methane continues to be problematic and where use of nitrogen fertilizer is responsible for negative impacts on both human populations and ecosystems. The manipulation of biological nitrogen fixation (BNF) could help alleviate part of the difficulty by decreasing the need for nitrogen fertilizers, which require huge quantities of fossil fuel to produce and contribute to the release of nitrous oxide from soil as well as being responsible for the contamination of drinking water systems and natural habitats. BNF is performed by a variety of microorganisms. One of the most studied examples is the BNF carried out by rhizobial bacteria in symbiosis with their plant hosts such as pea and soybean. Hydrogen gas is an energy-rich, obligate by-product of BNF. Legume symbioses with rhizobia lacking hydrogenase enzymes (which can recycle hydrogen) have traditionally been viewed as energetically inefficient. However, recent studies suggest hydrogen release to soil may be beneficial, increasing soil carbon sequestration and promoting growth of hydrogen-oxidizing bacteria beneficial to plant growth; the alleged superiority of symbiotic performance in rhizobia possessing functional hydrogenases (HUP+) over those rhizobia without functional hydrogenases (HUP−) has also not been conclusively shown. The structure of the iron-molybdenum cofactor or FeMo-co of nitrogenase (the active site of the enzyme) has been elucidated through X-ray crystallography but the mechanism of nitrogen fixation remains unknown. However, studies of effects of hydrogen production on BNF have revealed potential candidate intermediates involved in the nitrogenase reaction pathway and have also shown the role of hydrogen as a competitive inhibitor of N2, with hydrogen now considered to be the primary regulator of the nitrogenase electron allocation coefficient. The regulation of oxygen levels within legume root nodules is also being investigated; nitrogen fixation is energetically expensive, requiring a plentiful oxygen supply but too high an oxygen concentration can irreversibly damage nitrogenase, so some regulation is needed. There is evidence from gas diffusion studies suggesting the presence of a diffusion barrier in nodules; leghaemoglobin is another potential O2 regulator. Possible functions of hydrogenases include hydrogen recycling, protection of nitrogenase from damaging O2 levels and prevention of inhibitory H2 accumulation; there is evidence for H2 recycling only in studies where H2 uptake has been strongly coupled to ATP production and where this is not the case, it is believed that the hydrogenase acts as an O2 scavenger, lowering O2 concentrations. The distribution of hydrogenases in temperate legumes has been found to be narrow and root and shoot grafting experiments suggest the host plant may exert some influence on the expression of hydrogenase (HUP) genes in rhizobia that possess them. Many still believe that HUP+ rhizobia are superior in performance to HUP− species; to this end, many attempts to increase the relative efficiency of nitrogenase through the introduction of HUP genes into the plasmids or chromosomes of HUP− rhizobia have been carried out and some have met with success but many other studies have not revealed an increase in symbiotic performance after successful insertion of HUP genes so the role of HUP in increasing parameters such as N2 fixation and plant yield is still unclear. One advantage of the hydrogen production innate to BNF is that the H2 evolved can be used to measure N2 fixation using new open-flow gas chamber techniques seen as superior to the traditional acetylene reduction assay (ARA) conducted in closed chambers, although H2 cannot be used for field studies yet as the ARA can. However, the ARA is now believed to be unreliable in field studies and it is recommended that other measures such as dry weight, yield and total nitrogen content are more accurate, especially in determining real food production, particularly in the developing nations. Another potential benefit of H2 release from root nodules is that it stays in the soil and has been found to be consumed by H2-oxidizing bacteria, many of which show plant growth–promoting properties such as the inhibition of ethylene biosynthesis in the host plant, leading to root elongation and increased plant growth; they may well be promising as biofertilizers if they can be successfully developed into seed inoculants for non-leguminous crop species, decreasing the need for chemical fertilizers. It has been suggested that rhizobia can produce nitrous oxide through denitrification but this has never been shown; it is possible that hydrogen release may provide more ideal conditions for denitrifying, free-living bacteria and so increase production of nitrous oxide that way and this issue will require more study. However, it seems unlikely that a natural system would release nitrous oxide to the same degree that chemical fertilizers have been shown to do. |
| Starting Page | 101 |
| Ending Page | 121 |
| Page Count | 21 |
| File Format | |
| ISSN | 16103653 |
| Journal | Environmental Chemistry Letters |
| Volume Number | 8 |
| Issue Number | 2 |
| e-ISSN | 16103661 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2010-03-12 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Geochemistry Analytical Chemistry Pollution Environmental Chemistry Ecotoxicology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|