Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Jodeiri Shokri, Behshad Ramazi, Hamidreza Doulati Ardejani, Faramarz Sadeghiamirshahidi, Mohammadhossein |
| Copyright Year | 2013 |
| Abstract | Two models were evaluated as alternative methods for predicting pyrite oxidation in the Alborz Sharghi coal washing waste pile (in northeastern Iran). The first model applies a ‘feed-forward artificial neural network (ANN) with 4-7-1 structure’. The model uses depth, initial remaining pyrite fraction, mole fraction of oxygen, and annual precipitation as input parameters and returns the remaining pyrite fraction in the related depth of the pile as its output. In the second model, an adaptive neuro-fuzzy inference system (ANFIS), which uses generalised bell membership functions and the Takagi–Sugeno-type fuzzy inference system, was applied with the same input–output parameters. The correlation coefficient, root mean squared error, and average absolute relative error for the training stage of the ANNs were 0.81, 0.169, and 0.12, respectively, while the values for ANFIS were 0.91, 0.091, and 0.078, respectively. Comparison of the correlation coefficients and the error parameters revealed that both models successfully predicted remaining pyrite fraction from various depths of the pile. However, ANFIS was found to be more reliable and more accurate.Zwei Modelle werden am Beispiel der Alborz-Shargi Kohlenwaschhalde als alternative Methoden zur Vorhersage von Pyritoxidationsprozessen beurteilt. Im ersten Modell werden vorwärtsbetriebene künstliche neurale Netze (ANN, „artificial neural network“) mit 4-7-1 Strukturen verwendet. Als Eingangsparameter gehen Tiefenangaben, die Anfangsmenge der Pyritfraktion, die Stoffmenge an Sauerstoff und der Jahresniederschlag in die Modelle ein. Berechnet wird die verbleibende Pyritmenge in verschiedenen Tiefen der Halde. Im zweiten Modell wird das ANFIS-Modell (Adaptives netzbasiertes Fuzzy Interface System) mit verallgemeinerter Glockenkurvenfunktion und dem Fuzzy System vom Takagi–Sugeno-Typ als Eingangs- bzw. Ausgangsparameter verwendet. Die zuerst genutzten Korrelationskoeffizienten, mittleren quadratischen Abweichungen und mittleren relativen Fehler betrugen für das ANN-Modell 0,81, 0,169 sowie 0,12 und für das ANFIS-Modell 0,91, 0,091 sowie 0,078. Der Vergleich der Korrelationskoeffizienten und der Fehlerparameter zeigt, dass beide Modelle die verbleibende Pyritfraktion in den jeweiligen Tiefen zufriedenstellend berechnen können. Die Ergebnisse des ANFIS Modells erscheinen jedoch verlässlicher.Dos modelos fueron evaluados como métodos alternativos para predecir la oxidación de pirita en la pila de residuos del proceso de lavado de carbón Alborz Sharghi (en el noreste de Irán). El primer modelo aplica a red neuronal artificial pre-alimentada (ANN) con estructura 4-7-1. El modelo usa la profundidad, la fracción remanente de pirita, la fracción molar de oxígeno y la precipitación anual como parámetros de entrada y la fracción remanente de pirita en la profundidad requerida como salida de la red. En el segundo modelo, un sistema de inferencia neuro-difusa adaptado (ANFIS), que usa funciones generalizadas con forma de campana y el sistema de interferencia difusa Takagi–Sugeno, se aplicó con los mismos parámetros de entrada y salida. El coeficiente de correlación, la raíz del error cuadrático medio y el error relativo promedio para la etapa de entrenamiento del ANNs fueron 0,81, 0,169 y 0,12, respectivamente, mientras que los valores para ANFIS fueron 0,91, 0,091 y 0,078, respectivamente. La comparación de los coeficientes de correlación y los errores en los parámetros revelaron que ambos modelos predicen exitosamente la fracción remanente de pirita a diferentes profundidades de la pila. Sin embargo, ANFIS fue más preciso y confiable.利用两种模型预测了伊朗东北部Alborz Sharghi洗煤厂废石堆中黄铁矿的氧化过程。第一个模型运用前馈人工神经网络(feed-forward artificial neural network,ANN)4-7-1模型,以黄铁矿埋深、黄铁矿初始残余量、氧摩尔浓度和降水量为输入参数,以废石堆内相应埋深的残余黄铁矿量为输出值。第二个模型采用自适应神经模糊推理系统(adaptive neuro- fuzzy inference system,ANFIS)的钟形隶属函数和Takagi–Sugeno型模糊推理系统,选用同样的输入和输出参数。ANNS方法学习阶段的相关系数、均方根误差、平均相对误差绝对值分别为0.81、0.169和 0.12,而ANFIS方法学习阶段的上述检验值分别为0.91、0.09和0.078。比较两个模型的相关系数和误差值发现,两个模型都成功地预测了废石堆中不同埋深残余黄铁矿含量,而且ANFIS方法更可靠和准确。 |
| Starting Page | 146 |
| Ending Page | 156 |
| Page Count | 11 |
| File Format | |
| ISSN | 10259112 |
| Journal | Mine Water and the Environment |
| Volume Number | 33 |
| Issue Number | 2 |
| e-ISSN | 16161068 |
| Language | Chinese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-11-19 |
| Publisher Institution | International Mine Water Association (IMWA) |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Acid mine drainage generation Alborz Sharghi Mole fraction of oxygen Remaining pyrite fraction Geology Hydrogeology Sedimentology Energy Economics Ecotoxicology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Water Science and Technology Geotechnical Engineering and Engineering Geology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|